Dimension Reduction Using RST and Map Reduce

Karishma Aatar!, Shilpa Chougale® C:"

1.2 Rajarambapu Institute of Technology
Sangli, Maharashtra
India

karishma.aatar07 @gmail.com, 2chougaleshilpa04@gmail.com

ABSTRACT: Nowadays, handling with massive data at big rate or large-scale data mining has become new task. Rough set
theory for knowledge learning or developing is applied in data mining. In this project we are going to present a serial as well
as a parallel method [1]. These serial and parallel methods are used for computing rough set approximations. We will
implement the parallel algorithm on Hadoop Map Reduce platform [3, 5]. We will evaluate the performance of three parallel
algorithms with respect to its speedup, scale up and size up[7]. The Hadoop Map Reduce platform is a programming model
and also it is a software framework for developing applications. The Hadoop Map Reduce platform works on massive data
and also it the data gets processed rapidly in parallel on large clusters of compute notes. In this project, we will evaluate only
the efficiency of the algorithms and not its accuracy. By using parallel method on Hadoop platform, due to transparent
spilling, the data size limit will be get removed. However, algorithms based on rough set theory are quite a challenging task
for the applications of enlarged data.

Keywords: Rough Set, Data Mining, Sequential Algorithm, Parallel Algorithm, HDFS (Hadoop Distributed File System)
Received: 17 November 2014, Revised 23 December 2014, Accepted 7 January 2015

© 2015 DLINE. All Rights Reserved

1. Introduction

Massive data mining and knowledge discovery present a tremendous challenge with the data volume growing at an
unprecedented rate. Rough set theory has been successfully applied in data mining. The lower and upper approximations are
basic concepts in rough set theory. The effective computation of approximations is vital for improving the performance of data
mining or other related tasks. The recently introduced Map Reduce technique has gained a lot of attention from the scientific
community for its applicability in massive data analysis. This paper proposes a parallel method for computing rough set
approximations. On sequentially, algorithms corresponding to the parallel method based on the Map Reduce technique are put

forward to deal with the massive data. An extensive experimental evaluation on different large data sets shows that the proposed
parallel method is effective for data mining.

2. Eaerlier Studies

In this section we will introduce our starting point, i.e. Rough Set Theory and Hadoop concept.

18 Progress in Computing Applications Volume 4 Number 1 March 2015

2.1 Rough Set Theory

Rough Set Theory[5] is one of the mathematical method which was developed by Pawlak in 1982. It deals with the classificatory
analysis of data tables. The main goal of the rough set analysis is to synthesize approximation of concepts from acquired data.
The fundamental concept behind Rough Set Theory is the approximation of lower and upper spaces of a set, the approximation
of spaces being the formal classification of knowledge regarding the interest domain.

Rough Set Theory represents different mathematical approach to vagueness, uncertainty. Rough Set Theory is applied in data
mining for knowledge acquisition. Rough Set Theory is proposed to process with big data. When the available data is insufficient
to determine the value of a given set then at that time we can use Rough Set Theory for the representation of the concerned set.
The basic concepts in Rough Set Theory are upper approximation and lower approximation.

The subset generated by lower approximations is characterized by objects that will definitely form part of an interest subset,
whereas the upper approximation is characterized by objects that will possibly form part of an interest subset. Every subset
defined through upper and lower approximation is known as Rough Set.

Over the years Rough Set Theory has become a valuable tool in the resolution of various problems, such as: representation of
uncertain or imprecise knowledge; knowledge analysis; evaluation of quality and availability of information with respect to
consistency and presence not of date patterns; identification and evaluation of date dependency; reasoning based an uncertain
and reduct of information data.

The Rough Set Theory has been applied in several fields some of them are data mining, image processing, medical informatics,
pattern recognition, knowledge discovery and expert systems.

Basic Concepts Of The Rough Sets Theory

Information System

Formally, an information system[5], IS can be seen as a system IS = (U, A) where U is the universe (a finite set of objects, U={x1,
X2,.....,xm}) and A is the set of attributes. Each attribute ac A defines an information function fa: U ->Va where Va is the set of
values of a, called the domain of attribute a.

Indiscernibility Relation

For every set of attributes B — A, an indiscernibility relation Ind(B) is defined in the following way: two objects, xi and xj are
indiscernible by the set of attributes B in A, if b (xi) = b(xj) for every b c B. The equivalence class of Ind (B) is called elementary
setin.

Lower and Upper Approximations
The rough sets approach to data analysis hinges on two basic concepts, namely the lower and the upper approximations of a
set .

Let X denote the subset of elements of the universe U (X c U). The lower approximation of X in B(B < A),denoted as BX, is
defined as the union of all these elementary sets which are contained in X.

The above statement is to be read as: the lower approximation of the set X is a set of objects xi, which belong to the elementary
sets contained in X (in the space B)

The upper approximation on the set X, denoted as BX, is the union of these elementary sets, which have a non-empty intersection
with X:

BX={xie U | [xi] Ind (B) X= 0}.
For any object xi of the lower approximation of X (i.e., xi € BX), it is certain that it belongs to X. For any object xi of the upper

approximation of X (i.e., xie BX), we can only say that xi may belong to X. The difference BNX =BX —BX Isaboundary of X in
u.

Accuracy of Approximation

Progress in Computing Applications Volume 4 Number 1 March 2015 19

An accuracy measure of the set X in B:A is defined as:
uB (X) = card (BX) / card(BX)

The cardinality of a set is the number of objects contained in the lower (upper) approximation of the set X. As one can notice,
0< uB (X)<1.If Xisdefinable in U then uB(X) = 1, if X is indefinable in U then uB(X) <-1.

Core and Reduct of Attributes

If the set of attributes is dependent, one can be interested in finding all possible minimal subsets of attributes, which lead to the
same number of elementary sets as the whole set of attributes (reducts) [5] and in finding the set of all indispensable attributes
(core)[5].

The concepts of core and reduct are two fundamental concepts of the rough sets theory. The reduct is the essential part of an
IS, which can discern all objects discernible by the original IS. The core is the common part of all reducts. To compute reducts
and core, the discernibility matrix is used. The discernibility matrix has the dimension n x n, where n denotes the number of
elementary sets and its elements are defined as the set of all attributes which discern elementary sets [x]i and [X] j.

2.2 Hadoop
Hadoop includes fault-tolerant storage system called Hadoop Distributed File System. HDFS is used to store large amount of
information, scale up incrementally without losing data..

Hadoop distributes the data by pushing the work involved in an analysis out to many different servers. Each of the servers runs
the analysis on its own block from the file. Hadoop is an open-source software framework written in Java and based on Google’s
MapReduce[1] and distributed file system work. It is built to support distributed applications by analyzing very large bodies of
data using clusters of servers, transforming it into a form that is more usable by those applications. Hadoop is designed to be
deployed on commonly available, general-purpose infrastructure.

2.3HDFS

The Hadoop Distributed File System[2] is a scalable and reliable distributed storage system that aggregates the storage of every
node in a Hadoop cluster into a single global file system. HDFS stores individual files in large blocks, allowing it to efficiently
store very large or numerous files across multiple machines and access individual chunks of data in parallel, without needing to
read the entire file into a single computer’s memory. Reliability is achieved by replicating the data across multiple hosts, with
each block of data being stored, by default, on three separate computers. If an individual node fails, the data remains available
and an additional copy of any blocks it holds may be made on new machines to protect against future failures.

Hadoop Distributed File System (HDFS)achieves fault tolerance and high performance by breaking data into blocks and
spreading them across large numbers of worker nodes. Hadoop MapReduce Engine accepts jobs from applications and divides
those jobs into tasks that it assigns to various worker nodes.

Hadoop coordinates work among clusters of machines which are created by hadoop itself. Clusters can be built with inexpensive
computers. If one of the machine fails, without losing data or interrupting work hadoop continues the work by shifting work to
remaining machine in the cluster. By breaking incoming files into pieces called “blocks”, and storing each of the blocks
redundantly across the pool of servers, HDFS manages storage in cluster. HDFS stores three complete copies of each file.

We can see that even though any two servers fails then entire file will still be available. HDFS creates a new copy of missing data
from the replicas which it manages when it notices a block or a node is lost. As the cluster stores several copies of every block,
clients can read them at the same time without creating bottlenecks.

There are various redundancy techniques such as RAID machine. HDFS has two key advantages over RAID that,

i) It requires no special hardware because it can be built from commodity servers.

ii)It can survive more kinds of failure.

20 Progress in Computing Applications Volume 4 Number 1 March 2015

2.4 MapReduce

Hadoop operates on massive datasets by horizontally scaling the processing across very large numbers of servers through an
approach called MapReduce, MapReduce is the programming model that allows Hadoop to efficiently process large amounts of
data. MapReduce breaks large data processing problems into multiple steps, namely a set of Maps and Reduces, that can each
be worked on at the same time (in parallel) on multiple computers.

MapReduce is designed to work with of HDFS. Apache Hadoop automatically optimizes the execution of MapReduce programs
so that a given Map or Reduce step is run on the HDFS node that contains locally the blocks of data required to complete the
step. Explaining the MapReduce algorithm in a few words can be difficult, but we provide an example in Appendix A for the
curious or technically inclined. For the rest, suffice it to say that MapReduce has proven itself in its ability to allow data
processing problems that once required many hours to complete on very expensive computers to be written as programs that
run in minutes on a handful of rather inexpensive machines. And, while MapReduce can require a shift in thinking on the part of
developers, many problems not traditionally solved using the method are easily expressed as MapReduce programs.

2.5 Hadoop for Big Data Analysis

Hadoop aims at problems that require examination of all the available data. Hadoop uses a technique called MapReduce to carry
out the exhaustive analysis quickly such as Text Analysis and Image Processing which requires that every single record to be
read.

3. Related Work

3.1 Sequential Method

The decision table S=(U,AV,F)

T '\--'\-ﬁ-

Computing lower and upper
approximations of decision
classes

Figure 1. Sequential Method
4. Proposed System

4.1 Parallel Method
In parallel method we overcome the time complexity problem of sequential method.
In this we are going to use hadoop mapreduce which is a programming model and software framework for developing applications

that rapidly process massive data in parallel on large clusters of computer nodes, each of which has four 2.13 GHz cores and 12
GB of memory. Hadoop version 0.20.2 and Java 1.6.0.01 are used as the MapReduce system for all experiments.

Progress in Computing Applications Volume 4 Number 1 March 2015 21

In parallel method we calculate the efficiency of algorithm not the accuracy because both the method i.e parallel and sequential
method produces same result.

We may design the corresponding parallel algorithms for computing equivalence classes, decision classes and associations
between equivalence classes and decision classes.

We present a parallel method for computing rough set approximations. Our parallel algorithms have all been implemented on
Hadoop MapReduce platform.

The proposed parallel method scales up very well and has excellent speedup and sizeup behavior. Specially, as the size of the
data set increases, the speedup performs better.

The sequential method performs in-memory processing, it cannot deal with large data set the proposed parallel method removes
this data size limit.

Input the decision
mhble S=(L1, AV, F)

v < v

Computing equivalence
classes Based on
MapReduce{algorithm

Computing declsion
classes Based on
mMapReduce (Algorithm

Constructing the
associations Based on
MapReduce [Algarithm

PACAED)

PECRSEC) RECHSDC)

¥

Computing the

indexes of
approximalions
[(Algorithirm ACIRSS5A)

|

h J
Output the
approximations
according to the
indexes

Figure 2. Parallel Method

No.Of Tuples Execution Time(Milisecond)
10000 0.0843
20000 0.1886
30000 0.2529
40000 0.3372
50000 0.4215

Table. 1 Execution Time Representation

22 Progress in Computing Applications Volume 4 Number 1 March 2015

5. Objectives

5.1 Scale up

Scaleup[4] is ability of larger system to perform larger job in the same execution time. Scaleup (D, p) =T,/ T, pWhere D isthe data
set, TDi is the execution time for D on i node, TDp is the execution time for p *D on p nodes.

5.2 Size up

Sizeup[4] analysis holds the number of computers in the system constant, and grows the size of the data sets by the factor p.

Sizeup (D, p) = Tsp/T31where TSp is the execution time for p * D, TS1 is the execution time for D.

5.3 Speedup

To measure the speedup[4], we keep the data set constant and increase the number of nodes in the system. Speedup(p) = T,

6. Results

We have tested existence system on .NET framework. This section contains the results got after the implementation of sequential

method for rough set approximation.

B augh S80 Thesy

1 Digatra s drntases
Care

[

[T ST

1 * PEdAmtaree lal]

abadelghi

abednlghi

B

. T T S SR

10,1 002, 3 T 0 S
*

E st T i
i (1081

Fough St Dpmstom

Figure 3. Sequential Algorithm

The figure 3 shows the sequential algorithm we have resorted for the Rough Set Theory. The figure 4 shows the measure of
volume which is expressed in tuples. In the figure the observation is that the tuples increase constantly with the execution time.
Thus the velocity increases with the increase of execution time

Go000

50000

40000

30000
20000

Noof tuples

10000

cl -

1 z 3 4 5

Execution time in ms

——"Seriesl
—W—5eries2

Figure 4. Volume Vs Velocity

Progress in Computing Applications Volume 4 Number 1 March 2015

23

Hadoop Services
In the figures below we have given the result of hadoop services testing. The services screen reflect the local host interference.

Bduief@sbunts - fhadoog in

Figure 5. Screen-shot for starting hadoop services

"OEIaD ADDEN e |

Figure 6. Screen-shot for starting Hadoop jps

Besides the Hadoop services we have also shown the Hadoop jps in the figure 6. Due to high intensity the figure is not much
clear.

State: RUNKING
B Started: Sun Mar 29 16:55:09 IST 200%
o Version: 0.0 2, ré11707
Complled: fri Feb 19 08:07-34 UTC 2010 by chrisdo
Identifar: 201503291655

Cluster Summary (Heap Size is 29.06 MB/888.94 MB)

Maps Redudes Total Submissions Modes Map Task Capacity Reduce Task Capacity Mvg. Tesks'Nods BlackBsted Modes
] -] o) 2 2 4.00 L]

Queue Hame Scheduling Information
opaut L)

Filter (Jobid, Prierity, User, Nams}
s 0 X0 il P -

Tty P iy ST 6y i U s P el 190 1] Mty

Running Jobs

navs

=
]
B
=
B
' Scheduling Information
@)
L7
B
]

Figure 7. Displays Map/Reduce Administration

24 Progress in Computing Applications Volume 4 Number 1 March 2015

The login is enabled by the administrator in localhost hadoop map as shown in the figure 7. The Heap size drawn is found to be
29.06 MB.

Figure 8. Screen-shot checking mapper , reducer for DecisionClass

The checking mapper is exhibited in the figure 8 which is the reducer for DecisionClass.

WOFS:c_output 501 par 00008 - Magills Frefer

-

) R— IWHLCHAN O SN rr———— - v

’ Flle: [de_output_001/part-D0000

Aowaload oplians

2] Don

BES)ED 45 > .4

this
ik whem b vinaw il Btk ion I fils's TFS hlack il 10

Figure 9. Screen-shot for DecisionClass
The DecisionClass is observed in the figure 9.
6. Conclusion

In this paper we explored the concept of Rough Set approximations using Hadoop Map reduce. The sequential algorithm tested
on different size of datasets. Also we have identified equivalence class, rough set reduct and core using sequential algorithm
which is applied on different size dataset.

References

[1] Scheduling divisible MapReduce computations, Journal of Parallel and Distributed Computing 71 (2011) 450-459.

[2] Hadoop: Open sourse implementation of MapReduce- “http://hadoop.apache.org/mapreduce/”.

Progress in Computing Applications Volume 4 Number 1 March 2015 25

[3] A Parallel method for computing Rough Set Approximation’- Information Sciences Journal-194 (2012) 209-223 By Junbo
Zhang, Tianrui Li, Da Raun, Zizhe Gao, Chengbin Zhao.

[4] Zhang, J. (2012). A parallel method for rough set approximations, Information Sciences Journal-194 (2012) 209-223 By Junbo
Zhang.

[5] Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publisher, Dordrecht, Nether-
lands,.

[6] Ziarko, W. P. Ed. (1994). Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer, New York.,

26 Progress in Computing Applications Volume 4 Number 1 March 2015

