Fourth Fifth International Conference on Science and Technology Metrics (STMet 2024)
 

 

Metadata fields in Web of Science, Scopus, Dimensions and OpenAlex Databases: An exploratory analysis of the possibilities and ease of doing scientometric analyses
Prashasti Singh, Vivek Kumar Singh, Anurag Kanaujia
Shri Ram College of Commerce, University of Delhi, Delhi, India ., Department of Computer Science, Banaras Hindu University, Varanasi, India ., Department of Computer Science, University of Delhi, Delhi-110007, India ., Delhi School of Analytics, Universi
Abstract: The various multidisciplinary and subject-specific scholarly databases have been the prime source of data for information retrieval and STI-related studies. Traditionally, Web of Science and Scopus have been popular choices of researchers. However, during the last few years, several new scholarly databases have been created, such as Dimensions, OpenAlex etc. Several studies have shown that coverage and data fields provided by these databases decide, to a large extent, the kind and scale of analysis that can be performed using these databases. However, there is a need for an updated study that includes the newer databases and focuses more on the availability of different metadata fields. This work is a step ahead as it provides a detailed comparative analysis of the research metadata fields provided by Web of Science, Scopus, Dimensions and OpenAlex databases. The analysis helps understand the possibilities and ease of scientometric analysis using these databases. Valuable results are obtained, and practical suggestions are provided for scientometric researchers, practitioners, and database managers.
Keywords: Research Evaluation, Scientometric analysis, Scholarly Databases Metadata fields in Web of Science, Scopus, Dimensions and OpenAlex Databases: An exploratory analysis of the possibilities and ease of doing scientometric analyses
DOI:https://doi.org/10.6025/stm/2024/5/214-222
Full_Text   PDF    Download:   77  times
References:


[1] Adriaanse, L. S., & Rensleigh, C. (2011). Comparing Web of Science, Scopus and Google Scholar from an environmental sciences perspective. South African journal of libraries and information science, 77(2), 169-178.

[2] Adriaanse, L. S., & Rensleigh, C. (2013). Web of Science, Scopus and Google Scholar: A content comprehensiveness comparison. The Electronic Library, 31(6), 727-744.

[3] Akbaritabar, A., Theile, T., & Zagheni, E. (2023). Global flows and rates of international migration of scholars (No. WP-2023-018). Max Planck Institute for Demographic Research, Rostock, Germany.

[4] Aksnes, D. W., & Sivertsen, G. (2019). A criteria-based assessment of the coverage of Scopus and Web of Science. Journal of Data and Information Science, 4(1), 1-21.

[5] Alperin, J. P., Portenoy, J., Demes, K., Larivière, V., & Haustein, S. (2024). An analysis of the suitability of OpenAlex for bibliometric analyses. arXiv preprint arXiv:2404.17663.

[6] Archambault, É., Vignola-Gagné, É., Côté, G., Larivière, V., & Gingrasb, Y. (2006). Benchmarking scientific output in the social sciences and humanities: The limits of existing databases. Scientometrics, 68(3), 329-342.

[7] Arroyo-Machado, W., & Costas, R. (2023, April). Do popular research topics attract the most social attention? A first proposal based on OpenAlex and Wikipedia. In 27th International Conference on Science, Technology and Innovation Indicators (STI 2023). International Conference on Science, Technology and Innovation Indicators.

[8] Bar-Ilan, J. (2008). Which h-index?—A comparison of WoS, Scopus and Google Scholar. Scientometrics, 74, 257-271.

[9] Basson, I., Simard, M. A., Ouangré, Z. A., Sugimoto, C. R., & Larivière, V. (2022). The effect of data sources on the measurement of open access: A comparison of Dimensions and the Web of Science. PLoS one, 17(3), e0265545.

[10] Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. arXiv preprint arXiv:1305.0377.

[11] Delgado-Quirós, L., & Ortega, J. L. (2024). Completeness degree of publication metadata in eight free-access scholarly databases. Quantitative Science Studies, 1-36.

[12] Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB journal, 22(2), 338-342.

[13] Harzing, A. W. (2019). Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science?. Scientometrics, 120(1), 341-349.

[14] Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787-804.

[15] Haunschild, R., & Bornmann, L. (2024). Usage of OpenAlex for creating meaningful global overlay maps of science on the individual and institutional levels. arXiv preprint arXiv:2404.02732.

[16] Huang, C. K., Neylon, C., Brookes-Kenworthy, C., Hosking, R., Montgomery, L., Wilson, K., & Ozaygen, A. (2020). Comparison of bibliographic data sources: Implications for the robustness of university rankings. Quantitative Science Studies, 1(2), 445-478.

[17] Gavel, Y., & Iselid, L. (2008). Web of Science and Scopus: a journal title overlap study. Online information review, 32(1), 8-21.

[18] Ismail, S., Mermoud, A., Marechal, L., Orso, S., & David, D. P. (2023, April). Capturing Trends Using OpenAlex and Wikipedia Page Views as Science Indicators: The Case of Data Protection and Encryption Technologies. In 27th International Conference on Science, Technology and Innovation Indicators (STI 2023). International Conference on Science, Technology and Innovation Indicators.

[19] Larivière, V., Archambault, É., Gingras, Y., & Vignola Gagné, É. (2006). The place of serials in referencing practices: 

Comparing natural sciences and engineering with social sciences and humanities. Journal of the American Society for Information Science and Technology, 57(8), 997-1004.

[20] Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics, 2021; 126(1): 871-906

[21] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018a). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of informetrics, 12(4), 1160-1177.

[22] Martín-Martín, A., Orduna-Malea, E., & Delgado López-Cózar, E. (2018). Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison. Scientometrics, 116(3), 2175-2188.

[23] Massri, M. B., Spahiu, B., Grobelnik, M., Alexiev, V., Palmonari, M., & Roman, D. (2023, April). Towards innograph: a knowledge graph for AI innovation. In Companion Proceedings of the ACM Web Conference 2023 (pp. 843-849).

[24] Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106, 213-228.

[25] Mongeon, P., Bowman, T. D., & Costas, R. (2023). An open data set of scholars on Twitter. Quantitative Science Studies, 4(2), 314-324.

[26] Scheidsteger, T., & Haunschild, R. (2022). Comparison of metadata with relevance for bibliometrics between Microsoft Academic Graph and OpenAlex until 2020. arXiv preprint arXiv:2206.14168.

[27] Scheidsteger, T., Haunschild, R., Hug, S., & Bornmann, L. (2018). The concordance of field-normalized scores based on Web of Science and Microsoft Academic data: A case study in computer sciences. arXiv preprint arXiv:1802.10141.

[28] Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021a). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126, 5113-5142.

[29] Singh, P., Singh, V., K., Arora, P., Bhattacharya, S. (2021b). India’s rank and global share in scientific research: how data sourced from different databases can produce varying outcomes? Journal of Scientific & Industrial Research, 80(4), 336-346. 10.56042/jsir.v80i04.38273

[30] Singh, V. K., Singh, P., Uddin, A., Arora, P., & Bhattacharya, S. (2022). Exploring the relationship between journals indexed from a country and its research output: an empirical investigation. Scientometrics, 127(6), 2933-2966.

[31] Singh, V.K. & Singh, P. (2023). Exploring the publication metadata fields in Web of Science, Scopus and Dimensions: Possibilities and ease of doing scientometric analysis. Proceedings of the 19th International Conference on Scientometrics and Informetrics, 2023; https://zenodo.org/records/11163664

[32] Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science?. Journal of informetrics, 12(2), 430-435.

[33] Vieira, E. S., & Gomes, J. A. (2009). A comparison of Scopus and Web of Science for a typical university. Scientometrics, 81, 587-600.

[34] Visser, M., Van Eck, N. J., & Waltman, L. (2021). Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative science studies, 2(1), 20-41.

[35] Visser, M. S., van Eck, N. J., & Waltman, L. (2019, September). Large-scale comparison of bibliographic data sources: Web of Science, Scopus, Dimensions, and Crossref. In ISSI (Vol. 5, pp. 2358-2369).

[36] Yang, K., & Meho, L. I. (2006). Citation analysis: a comparison of Google Scholar, Scopus, and Web of Science. Proceedings of the American Society for information science and technology, 43(1), 1-15.

 


Copyright © 2023 dline.info