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ABSTRACT

This paper generalizes Cutler and Shiloah’s algorithm for routing with well-sepa-
rated destinations. We provide an O(n*/#- log n) approximation algorithm for NDP on
grids and give the APX-hardness proof. In this work, we discuss the integrality gap
of the multicommodity flow LP relaxation when all terminals are far from the grid
boundary.
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1. Introduction

In the classical Node-Disjoint Paths (NDP) problem, the input is an undirected n-
vertex graph G = (V, E), and a collection {(s,,t,), . . ., (s, ,t,)} of pairs of vertices,
called sourcedestination, or demand, pairs, that we would like to route. In order to
route a pair (s,, t;), we need to select some path P connecting s, to t,. The goal is to
route the largest possible number of the demand pairs on node-disjoint paths: that
is, every vertex of G may participate in at most one path in the solution.

NDP is one of the most basic and extensively studied routing problems. When the
number of the demand pairs k is bounded by a constant, Robertson and Seymour
[27, 29] have shown an efficient algorithm for the problem, as part of their seminal
Graph Minors project. However, when k is a part of the input, the problem is known
to be NP-hard [17]. Even though the NDP problem, together with its many variants,
has been extensively studied, its approximability is still poorly understood. The best

currently known upper bound on the approximation factor is O(y/n) [22], achieved

by the following simple greedy algorithm: start with graph G and
an empty solution. While G contains any path connecting any
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demand pair, choose the shortest such path P, add P to the solution, and delete all vertices of P
from G.Surprisingly, this elementary algorithm is the best currently known approximation
algorithm for NDP, even for restricted special cases of the problem, where the input graph G is

a planar graph, or even just a grid. On the negative side, it is known that there is no O(log/%
8 n)- approximation algorithm for NDP for any constant , unless NP = ZPTIME(nP°/ oa ) [5, 4].

Perhaps the biggest obstacle in breaking the O(./n)-approximation barrier for the problem is
the fact that the integrality gap of the standard multicommodity flow LP-relaxation for NDP is
Q(y/n), even in grid graphs. In the LP-relaxation, instead of connecting the demand pairs by
paths, we try to send as much flow as possible between the demand pairs, subject to the

constraint that each vertex carries at most one flow unit. The O(\/n)-approximation greedy
algorithm described above can be cast as an LP-rounding algorithm for the multicommodity flow

LP, and therefore, the integrality gap of the LP is ©(+/n). So far, rounding this LP relaxation has
been the main method used in designing approximation algorithms for a variety of routing

problems, and it appears that new techniques are needed in order to improve the O(y/n)-
approximation factor for NDP.

In this paper we break the O(+/n)-barrier on the approximation factor for NDP on grid graphs?,
by providing an O(n'/* - log n)-approximation algorithm. Our algorithm distinguishes between
two types of demand pairs: an (s,, t)) pair is bad if both s, and t, are close to the grid boundary,
and it is good otherwise. Interestingly, the standard integrality gap examples for the

multicommodity flow LP relaxation usually involve a grid graph, and bad demand pairs. Our
algorithm deals with bad and good demand pairs separately, and in particular it shows that if all
demand pairs are good, then the integrality gap of the LP relaxation becomes O(n/* - log n) (but
unfortunately it still remains polynomial in n - see Section 6). We complement these results by
showing that NDP is APX-hard even on grid graphs. We believe that understanding the
approximability of NDP on grid graphs is an important first step towards understanding the
approximability of the NDP problem in general, as grids seem to be the simplest graphs, for
which the approximability of the NDP problem is widely open, and the integrality gap of the

multicommodity flow LP is Q(\/n). We hope that some of the techniques introduced in this

paper will be helpful in breaking the O( /n)-approximation barrier in general planar graphs.

NDP in grid graphs has been studied in the past, often in the context of VLSI layout. Aggarwal,
Kleinberg and Williamson [1] consider a special case, where the set of the demand pairs is a
permutation - that is, every vertex of the grid participates in exactly one demand pair. They

show that for any permutation, one can route Q(\/n/logn) demand pairs. They also show that

with spacing d, every permutation contains a set of Q(,/n/logn) pairs that can be routed on
node-disjoint paths. Our algorithm for routing on grids is inspired by their work.

Cutler and Shiloach [16] studied NDP in grids in the following three settings. They assume that
all source vertices appear on the top row R, of the grid, and all destination vertices appear on
some other row R, of the grid, sufficiently far from the top and the bottom rows (for example, |
= [n/2]). In the packed-packed setting, the sources are a set of k consecutive vertices of R,
and the destinations are a set of k consecutive vertices of R,. They show a necessary and a

sufficient condition for when all demand pairs can be routed in the packed-packed instance. The
second setting is the packed-spaced setting. Here, the sources are again a set of k consecutive
vertices of R, but the distance between every consecutive pair of the destination vertices on R,
is at least d. For this setting, the authors show that if d > k, then all demand pairs can be
routed. We extend their algorithm to a more general setting, where the destination vertices

1Since n denotes, by convention, the number of vertices in the input graph, the size of the grid is

(Vi x /).
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may appear anywhere in the grid, as long as the distance between any pair of the destinatior
vertices, and any destination vertex and the boundary of the grid, is at least Q(k). This extension
of the algorithm of [16] is used as a basic building block in both our algorithm, and the APXA
hardness proof. We note that Robertson and Seymour [28] provided sufficient conditions for the
existence of node-disjoint routing of a given set of demand pairs in the more general setting o
graphs drawn on surfaces, and they provide an algorithm whose running time is poly(n) - f (k) fo
finding the routing, where (k) is at least exponential in k. Their result implies the existence of the
routing on grids, when the destination vertices are sufficiently spaced from each other and from
the grid boundaries. However, we are not aware of an algorithm for finding the routing, whose
running time is polynomial in n and k, and we provide such an algorithm here. The third setting
studied by Cutler and Shiloach is the spaced-spaced setting, where the distance between any pair
of source vertices, and any pair of destination vertices is at least d. The authors note that they
could not come up with a better algorithm for this setting, than the one provided for the packed-
spaced case.

Other Related Work

A problem closely related to NPD is the Edge-Disjoint Paths (EDP) problem. It is defined similarly,
except that now the paths chosen to the solution are allowed to share vertices, and are only
required to be edge-disjoint. It is easy to show, by using a line graph of the EDP instance, that NDF
is more general than EDP. The approximability status of EDP is very similar to that of NDP: there i

an O(y/n)-approximation algorithm [13], and it is known that there is no O(log*/?? n)-approximation
algorithm for any constant , unless NP = ZPTIME(nP°v 109 1) [5, 4]. As in the NDP problem, we can
use the standard multicommodity flow LP-relaxation of the problem, in order to obtain the O(\/n)

approximation algorithm, and the integrality gap of the LP-relaxation is Q(,/n) even on plana
graphs. However, for even-degree planar graphs, Kleinberg [19], building on the work of Chekuri
Khanna and Shepherd [12, 11], has shown an O(log? n)-approximation LP-rounding algorithm
Aumann and Rabani [8] showed an O(log? n)-approximation algorithm for EDP on grid graphs, and
Kleinberg and Tardos [21, 20] showed O(log n)-approximation algorithms for wider classes o
nearly-Eulerian uniformly high-diameter planar graphs, and nearly-Eulerian densely embedded
graphs. Recently, Kawarabayashi and Kobayashi [18] gave an O(log n)-approximation algorithm
for EDP when the input graph is either 4-edge-connected planar or Eulerian planar. It appears that
the restriction of the graph G to be Eulerian, or near-Eulerian, makes the EDP problem significantly
simpler, and in particular improves the integrality gap of the LP-relaxation. The analogue of the
grid graph for the EDP problem is the wall graph (see Figure 1): the integrality gap of the standara

LP relaxation for EDP on wall graphs is Q(\/n), and to the best of our knowledge, no better than

O(y/n)-approximation algorithm for EDP on walls is known. Our O(n* - log n)-approximation
algorithm for NDP on grids can be extended to the EDP problem on wall graphs (see Section 7).

!
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Figure 1. A wall graph
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A variation of the NPD and EDP problems, where small congestion is allowed, has been a subject
of extensive study. In the NDP with congestion (NDPwC) problem, the input is the same as in the
NDP problem, and we are additionally given a non-negative integer c. The goal is to route as many
of the demand pairs as possible with congestion at most c: that is, every vertex may participate
in at most c paths in the solution. EDP with Congestion (EDPwC) is defined similarly, except that
now the congestion bound is imposed on edges and not vertices. The classical randomized rounding
technique of Raghavan and Thompson [25] gives a constant-factor approximation for both
problems, if the congestion c is allowed to be as high as ©(log n/ log log n). A recent line of work
[12, 24, 3, 26, 14, 15, 10, 9] has lead to an O(poly log k)-approximation for both NDPwC and
EDPwC problems, with congestion c = 2. For planar graphs, a constant-factor approximation with
congestion 2 is known [30]. All these algorithms perform LP-rounding of the standard
multicommodity flow LP-relaxation of the problem.

Organization
We start with Preliminaries in Section 2, and show a generalization of the algorithm of Cutler and
Shiloah [16] for routing with well-separated destinations in Section 3. In Section 4 we provide an

0o(n'/* - log n)-approximation algorithm for NDP on grids, and we provide the APX-hardness proof
in Section 5. We discuss the integrality gap of the multicommodity flow LP-relaxation when all
terminals are far from the grid boundary in Section 6, and we sketch the extension of our O(n'/
4 log n)-approximation algorithm to EDP on wall graphs in Section 7.

2. Preliminaries

We consider the NDP problem in two-dimensional grids: The input is an (NxN)-grid graph
G = (V, E), and a collection M= {(s,,1),..., (s, t)} of pairs of vertices, called demand, or source-
destination, pairs. The goal is to find a largest cardinality collection P of paths, where each path in
P connects some demand pair (s, t), and every vertex of G participates in at most one path in Pp.

The vertices in the set {s,.t,,....8,.t) are called terminals. By convention, we denote n = |V|, so
n= N2
We assume that the grid rows are indexed Ry, ..., Ryin the top-to-bottom order, and the

columns are indexed C,, . . ., C, in the left-to-right order. We denote by v (i, j) the unique vertex
inR;,N CJ Given a vertex v e V, let col(v) denote the column, and row(v) denote the row in which

v lies. The boundary of the grid is T(G) = R, VR, v C, v C,. WecallR ,R,,C,,6C,the boundary
edges of the grid. Given any integers 1 <i<i’<N, 1 <j<j’<N, we denote by G[i : i’, j : j’] the sub-
graph of G, induced by the set {v(i”, j”) | i<i”<i’, j<j”<j’} of vertices. We sometimes say that
Gli: i’ j:]jlis the sub-grid of G, spanned by rows R;, . . . ,R,, and columns CJ., C ,CJ.,.
Given a path P in G, and a set S of vertices of G, we say that P is internally disjoint from S, if no
vertex of S serves as an inner vertex of P. We will use the following simple observation.

> Observation 1. Let G be a (h x w)-grid, with w, h > 2, and let k < min {w-2, h-2} be an
integer. Then for any pair L,L’ of opposing boundary edges of G, for any pairScV (L), Tc V(L)
of vertex subsets on these boundary edges, with |S| = |T| = k, there is a set ‘p ofk node-disjoint
paths, connecting the vertices of S to the vertices of T in G, such that all paths in p are internally
disjoint from V (L u L"). Moreover, the path set p can be found efficiently.

Proof. Let G’ be the sub-graph of G, obtained by deleting all vertices of (LU L") \ (Su T) from G.
It is enough to show that there is a set P of k disjoint paths connecting the vertices of S to the
vertices of T in G'.

Assume without loss of generality that L is the top and L’ is the bottom boundary edge of G.
Assume for contradiction that such a set p of paths does not exist. Then from Menger’s theorem,
there is a set Z of at most k — 1 vertices, such that in G’ \ Z, there is no path from a vertex of S
\ Z to a vertex of T \ Z. However, the vertices of S lie on k distinct columns of G, so at least one
such column, say C, does not contain a vertex of Z. Similarly, there is some column C’ of G that
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contains a vertex of T, and V (C’) \ Z = O;. Finally, since there are at least k + 2 rows in G, there issome
rowR=R,, R, that contains no vertex of Z. Altogether, (C U R u C’) \ G’lie in the same connecteq
component of G’ \ Z, and this connected component contains a vertex of S and a vertex of T, g
contradiction. The set p of paths can be found efficiently by computing the maximum single-
commodity flow between the vertices of S and the vertices of T in G’, and using the integrality o
flow.

Consider the input grid graph G. The L -distance between two vertices v(i, j) and v(i’, j°) is defined
asd (v(i, j), v(i’, j)) = max(li =i’|, |j —j’|). The distance between a set S c V (G) of vertices and
avertexveV(G)isd (v, S)=min, c{d (v, u)}.

Multicommodity Flow LP Relaxation
For each demand pair (s;,t) € M, let P; be the set of all paths connecting s, to t; in G, and let
P = UL_, P:. In order to define the multicommodity flow LP-relaxation of NDP, every path P P is
assigned a variable f(P) representing the amount of flow that is sent on P, and for each demand

pair (s,.,t,. ), we introduce variable X whose value is the total amount of flow sent from s;tot. The
LP-relaxation is then defined as follows.

(LP-flow) max %

i=1 Ti
s.t. Xpep, f(P) =x, v, <i<k
Ypwer f(P)<1 Yy eV
f(P)>20 V,<i<k, VPe P,

Even though this LP-relaxation has exponentially many variables, it can be efficiently solved by
standard techniques, e.g. by using an equivalent polynomial-size edge-based formulation.

It is well known that the integrality gap of (LP-flow) is Q(v/n) even in grid graphs. Indeed, let G be
an (N x N)-grid, and let k = N - 2. We let the sources s, , . . ., s, appear consecutively on row R,
starting from v(1, 1) in this order, and the destinations appear consecutively on row R, starting
from v(N, 1), in the opposite order: t,, . .., t, (see Figure 2). It is easy to see that there is g
solution to (LP-flow) of value k/3 = (N): for each pair (s,, t;), we send 1/3 flow unit on the path Pi
where P, is an s,~t, path lying in the union of columns C,,C,, , , and row R, + 1. On the other hand, it
is easy to see that the value of any integral solution is 1, since any pair of paths connecting the
demand pairs have tocross. Since the number of vertices in G is n = N?, this gives a lower bound o
Q(y/n) on the integrality gap of (LP-flow).
S; S, Sj3 o Sy
& @

40—

... oty ot

Figure 2. Integrality gap example
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3. Routing with Well-Separated Destinations

In this section we generalize the results of Cutler and Shiloach [16], by proving the following
theorem.

> Theorem 2. Let H be the (NxN)-grid, and let M={(sp, ), .., (s, 1)} be a set of k= 4 demand pairs in H, such
that: (i)s,, ..., s, are all distinct, and they appear on the first row of H; (ii) for all 1 <i=j<k d (1, tj) >4k +4; and (iii)
Jorall1<i<k d (t,V(I'(H)))> 4k+4. Then there is an efficient algorithm that routes all demand pairs in M ingraph
H.

The rest of this section is devoted to proving Theorem 2. For each destination vertex tj, we define
a sub-grid Bj of H of size ((2k + 3) x (2k + 3)), centered at tj, that is, if tj =w(i, i’), then BJ. isa
sub-grid of G spanned by rows R, . ... .. .R,., and columns C,_,.,.....C. . of H.

We call the resulting sub-grids B,, . . ., B, boxes. Notice that all boxes are disjoint from each
other, due to the spacing of the destination terminals. We start with a high-level intuitive description
of our algorithm. For each box BJ., we can associate an interval I (BJ.) c (1, N) with Bj, as follows:
If Gi, ,Ci, are the columns of H containing the first and the last columns of Bj, respectively, then
I(Bj) =(i, i,). We say that the resulting set 7 = {I (BJ.)}?=1 ofintervals is aligned, if for all i # j, either
I(B) =I(Bj), orI(B) N (Bj) = (). For simplicity, assume first that all intervals in T are aligned, and let
{I Ay ey Ir} be the set of all distinct intervals in T, ordered in their natural left-to-right order.
Foreach 1 <h<r, let 3, be the set of all boxes Bj with I(BJ.) =1I,,andletB = {le 1<j<k}. We
define a "snake-like” ordering of the boxes in B as follows. Forall 1 < h < h’<r, the boxes of By
appear before all boxes of B3;,” in this ordering. Within each set 3,, if h is odd, then the boxes of B3;,
are ordered in the order of their position in H from top to bottom, and otherwise they are ordered
in the order of their position in H from bottom to top. We then define a set ‘P of k paths, that start
from the sources s, ..., s,, and visit all boxes in 3 in this order (see Figure 3). We will make sure
that when the paths of P traverse any box By the path PJ. e ‘P that originates at S; visits the
vertex tj. In order to accomplish this, we need the following lemma.

e — ]

Figure 3. Traversing the boxes
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> Lemma 3. Let B be the ((2k+3) x (2k+3)) grid, t =v(k+ 2, k+2) the vertex in the center of the grid,
and 1 <j<kany integer. Let X={x, ..., x,} be any set of k vertices on the top boundary edge L of
BandY ={y, ...,y any set of k vertices on the bottom boundary edge L’ of B, both sets
ordered from left to right. Then we can efficiently find k disjoint paths P’,, . .., P’ in B, such that
for 1 < i < k, path P’, connects x to y,; all paths are internally disjoint from
V(Lu L"), and path P’j contains t.

Proof. Let U= {u,...,u} be any set of k vertices on row R, , of B, ordered from left to right, such
that u,=1. Let B’ B be the grid spanned by the top k + 2 rows of B, and B’c B” the grid spanned
by the bottom k+2 rows of B. Note that B’\B"=R,_,.

From Observation 1, there is a set P, of k node-disjoint paths in B’, connecting the vertices of X
to the vertices of U, and there is a set P, of k node-disjoint paths in B”, connecting the vertices

of U to the vertices of Y . Moreover, the paths in P, UP, are internally disjoint from V (R, ., L U

k+2
L’ . By concatenating the paths in ‘P, and P,, we obtain a set p’ of k node-disjoint paths in B,

connecting the vertices of X to the vertices of Y, such that the paths in p’ are internally disjoint
from L v L’. The intersection of each path in p’ with the row R, , is exactly one vertex. Since
graph B is planar, the paths in P’ cross the row R, _, in the same left-to-right order in which their
endpoints appear on L and L’. Therefore, for 1 <i < k, the ith path connects x; to y, and the jth
path contains the vertex t.

Since in general the intervals in I may not be aligned, we need to define the ordering between the
boxes, and the set of paths traversing them more carefully. We start by defining an ordering of

the destination vertices {t; }?Zl, which will define an ordering of their corresponding boxes.
We draw vertical lines in the grid at every column whose index is an integral multiple of (3k + 2),
andlet {V,, V,, ...} denote the sets of vertices of the resulting vertical strips of width 3k + 2,

thatis, for 1 <m <[N/(3k + 2)]1,
Vi ={v(4,7) | (m = 1)(8k+2) < 7' <min{m(3k +2),N};1 <j < N}

We assign every terminal tj to the unique set V_ containing tj . We then define a collection S of
vertical strips of H as follows: For each set V.., such that at least one terminal is assigned to V.
we add H[V ] to S. We assume that the set of strips S ={S,, ..., Sp} is indexed in their natural
left-to-right order. Abusing the notation, we will denote V (S ) by V,_, for 1 <m <p.

Consider some vertical strip Sm, and let t, tj eV, , forj = i. Then the horizontal distance between
t,and tj, | col(t;) - col(tj)l <3k + 2, and since d (t,, tj) > 4k + 4, t,and t. must be at a vertical
distance at least 4k + 4. Therefore, we can order the destination terminals assigned to the same
vertical strip in the increasing or decreasing row index. We define the ordering of all destination

terminals as follows: (1) for every 1 <m < m’<p, every terminal t, e V_ precedes every terminal
tj eV,_,and (2)fort, tj eV, , with row(tj) > row(t)), if m is odd then t, precedes tj, andifmis
even, then tj precedes t. Let B= {Bj | 1 <j <k} be the set of boxes corresponding to the
destination vertices. The ordering of the destination vertices now imposes an ordering on 3. We
re-index the boxes BJ. according to this ordering, and we denote by t(Bj) the unique destination
terminal lying in Bj. We will say that a box Bj belongs to strip S, iff the corresponding terminal
t(Bj) eV, . (Note that BJ. is not necessarily contained in S ). The following observation is immediate.

> Observation 4. If box Bj belongs to strip S, , then at least k + 2 vertices from the top boundary
of BJ. , and at least k + 2 vertices from the bottom boundary of BJ. belong to V.

Progress in Signals and Telecommunication Engineering Volume 13 Number 1 March 2024
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In order to complete the construction of the set P of paths routing all demand pairs, we define,
for 1 <i<k, aset P; of k disjoint paths, with the following properties:

P1. Paths in Py connect {s;}+_, to some set of k vertices on the top boundary of B,;
P2. Fori> 1:

¢ B, , and B, belong to the same strip S_, and m is odd, then paths in ‘P: connect k vertices on
the bottom row of B, , to k vertices on the top row of B;;

¢ B, , and B, belong to the same strip S_, and m is even, then paths in ‘P; connect k vertices on
the top row of B, | to k vertices on the bottom row of B;;

¢ B, | belongs to strip S, and B, to strip S_ .|, and m is odd, then paths in ‘P: connect k vertices
on the bottom row of B, , to k vertices on the bottom row of B;;

¢ B, , belongs to strip Sm and B, to strip S_ ,, and m is even, then paths in P: connect k
vertices on the top row of B, | to k vertices on the top row of B, and

P3. All paths in UL, P are disjoint from each other, and each path is internally disjoint from
Upes V(B).

» Theorem 5. There is an efficient algorithm to find the collections Py, . .., P, of paths with properties (3)—(3).

We prove Theorem 5 below, and we first complete the proof of Theorem 2 here. Assume that we
are given the path sets P, ..., P, with properties (3)-(3). For each box Bj , IetX]. c V(B].) be the
set of k vertices that serve as endpoints of the paths of P; , and let YJ c V(Bj) be the set of k
vertices that serve as endpoints of the paths in P;,. (For j = k, we choose the set Y, of k
vertices on the top or the bottom boundary of B, (opposing the boundary edge where the vertices
of X, lie) arbitrarily). We construct the set P of paths gradually, by starting with P = P, , and
performing k iteration. We assume that at the beginning of iteration i, set ‘P contains k disjoint
paths, connecting the k source vertices to the vertices of X.. This is clearly true at the beginning
of the first iteration. The ith iteration is executed as follows. Assume that t(B,) = t_, and let u €
X; be the vertex where the path of ‘P originating at sr terminates. From Lemma 3, we can find a
set Q,; of paths inside B, connecting the vertices of X, to the vertices of Y;, that are internally
disjoint from the top and the bottom boundary edges of B, such that the path originating at u
contains the vertex tr. We then concatenate the paths in P with the paths in Q;, and, if i < k,
with the paths in P, ,, to obtain the new set P of paths, and continue to the next iteration. After
k iterations, we obtain a collection of k node-disjoint paths that traverse all boxes Bj, such that
for each 1 < i < k, the path originating from s, contains the vertex t. It now remains to prove
Theorem 5.

Proof of Theorem 5. For each box B,, for 1 < j <k, we define four sub-graphs of H, VANANAY AL
that will be used in order to route the sets P;, Pj;1 of paths.

Consider some box BJ. , and assume that it belongs to strip S, LetC, C, be the columns of H that
serve as the left and the right boundaries of S, respectively. LetR,,R, be therows of H containing
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}k+2

i Lk +2
B;
Z }k+2

Figure 4 Graphs Z?, 7}, Z}* and Z}*
the k + 1 rows immediately above row R,, in addition to the row R, and ZJZ? is defined similarly
below Bj . Formally, Z]t» is the sub-grid of H spanned by columns ¢,....C, and rows Riwar--
/R, 50 Z! contains k + 2 rows and 3k + 2 columns. Similarly, Z! is the sub-grid of H spanned by
b .
columns ¢,....C, and rows Ryr /Ry ipsrs SO Zj contains k + 2 rows and 3k + 2 columns (see
Figure 4).

We now turn to define the grids Zi" and Z%* . Graph Z!" is defined as follows. Assume w.l.0.g. that
m is odd (recall that S_ is the strip containing t(Bj)). If BJ. is not the topmost box that belongs ta
S, then let R, be the row of H containing the bottom row on]l?_l; otherwise letR, =R, ifj >
landR, =R, ifj=1.Let R be the row of H containing the top row of Z}. We would like Z to
be the grid containing the segments of the middle k columns of S _, between rows R, and R,

Formally, we let Z}* be the sub-grid of H spanned by rows R,and R,,, and columns C,,,,.....C,,..,
We define the graph Z}" similarly. If B, is not the bottommost box of S_, then let R _be the row o

H containing the top row of Z]t‘+1 , and otherwise let R_ = R Let R_. be the row of H containing

N-k-1*
the bottom row of Z!. Graph Z} is the sub-grid of H spanned by rows R_,, . . . ,R., and columns
Crrrszr =+ 1Craaker

Notice that if B, is not the topmost box of Sm, then VAR Z]Z?E1 , and if B, is not the bottom most

box of B, then Z? = Z' . We need the following observation.
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> Observation 6. Forall1<q<k, B, Nz /B, NZi*=(. Moreover, if q # j, then additionally B,N
Z]Z»’,Bq Nz} =0.

Proof. We prove for Z! and Z!'. The proofs for Z! and Z% are symmetric.

Consider some box Bq with g = j, and assume for contradiction that Bq al Z]%t(/). Then the vertical
distance between t(B q) and t(Bj) is less than 4k + 4, and so the horizontal distance between
them must be greater than 4k + 4. However, t(Bj) lies in the strip S, , and, since Bq intersects
th», the horizontal distance between t(Bq) and the left or the right column of Sm is at most k + 1,
and so the total horizontal distance between t(Bq) and t(Bj) is at most 4k + 4, a contradiction.

Consider now some box B, for 1 < q < k, and assume for contradiction that B, N Z§t= 0. If B, is
the topmost box in S _, then Bq cannot belongto S, . IfBJ. is not the top most box of S_, then Bq
cannot belong to S, due to the definition of Z}'. Therefore, t(B,) lies in either S, orS, . But
since Bq is a box of width 2k + 3, with t(Bq) lying in (k + 2)th column of Bq, it is impossible for Bq
to intersect Z'.

We are now ready to define the sets P, of paths. In order to do so, we define a collection {Hl, .
.. ,H,} of disjoint sub-graphs of H, and each such sub-graph H, will be used to route the set P;
of paths. We start by letting H, be the union of three graphs, 7! 7!, and the sub-grid of H
spanned by the top k + 1 rows of H. We denote this latter graph by H’,. Recall that the terminal
t(B,) lies in strip S,. Let A, be the set of k vertices on the top boundary of Zi', A, the set of k
vertices on the bottom row of Zi', and let A, be any set of k vertices on the top row of B,, that
lie in S, (from Observation 4, such a set exists). From Observation 1, we can construct three
sets of paths: set P{ in H{, connecting each source vertex to some vertex of A,; set Py in Z{!
connecting the vertices of A, to the vertices of A, (the paths in P} are just the columns of Zi'),
and set P} in Z}, connecting the vertices of A, to the vertices of A,. We let P, be obtained by
concatenating the paths in P} ,P{, and P;".

Consider now some index 1 < j < k, and assume that ij1 belongs to some strip S,_.. We assume
w.l.o.g. that m is odd (the case where m is even is dealt with similarly), and we show how to
construct the set P; of paths. We consider two cases. The first case is when B, also lies in S, .
We then let Hj be the union of Z}_, , Z* | and Z!. The set P; of paths will be contained in H,, and
it is defined as follows. Let A, be any set of k vertices on the bottom row of BJ;1 , that lie in V.,
(this set exists due to Observation 4); let A, and A, be the vertices of the top and the bottom
rows of Z]l?ﬁl, respectively, and let A, be any set of k vertices on the top row of B]. thatliein Vv _.
As before, using Observation 1, we can construct three sets of paths: set 77]’» in Z]l?ﬁl, connecting
each vertex of A, to some vertex of A,; set P} in Z]l?ﬁl connecting the vertices of A, to the
vertices of A, (the paths in ‘P are just the columns of Z!,), and set P;" in Z}, connecting the
vertices of A, to the vertices of A,. We let P; be obtained by concatenating the paths in P]’» , 77]’»,

and P}’ .

Finally, assume that Bj belongsto S _ ... Let C and C, be the columns of H that serve as the left
boundary of S_ and the right boundary of S respectively. Let H; be the sub-grid of H,
Nekts - - - Ry We let Hj be the union of
Zy .7, Hj},Z} and Z!". Using methods similar to those described above, it is easy to find a

m+17

spanned by columns G, ...,C and rows R

r/
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set P; of k disjoint paths in Hj , connecting k vertices on the bottom row of BJ._1 to k vertices on
the bottom row of BJ. .

The case where m is even is dealt with similarly. The only difference is that in the case where B

belongs to S ki o+ Ry tO define H’j, instead of rows R, .., - - - ,R,, t0

avoid collision with the graph Hj.

m+1s WE USe rows R

From the construction of the graphs H,, it is easy to see that all such graphs are mutually disjoint
and therefore we obtain the desired sets Py, . .., P, of paths with properties (3)-(3).

4. An O (n'/%)-Approximation Algorithm

We assume that we are given the (N x N) grid graph G = (V, E), son = |V| = N?, and a collection
M ={(s;, t',.)}f:1 of demand pairs. We say that a demand pair (s,,t;) is bad if both d (s;, I (G))

d_(t,T(G))<4+\/N + 4, and we say that it is good otherwise. Let M', M" C M denote the sets o
the good and the bad demand pairs in M, respectively. We find an approximate solution to each o

the two sub-problems, defined by M’ and A", separately, and take the better of the two solutions.
The following two subsections describe these two algorithms.

4.1. Routing the Good Pairs

Our first algorithm provides an O(n*/# log n)-approximation for the special case when all demand
pairs are good. We start with a high-level overview of the algorithm. The algorithm is based on LP-
rounding of (LP-flow), and so it proves that the integrality gap of (LP-flow) for this special case ig
O(n**# log n). The first step of the algorithm is to reduce the problem to the following special case:
We are given a grid A of size (@(m) x ®(m)), where m < N/8 is some integer, and two disjoint sub-
grids Q,Q’ of A, of size (m x m) each, such that the minimum L_-distance between a vertex in
and a vertex in Q’is (m). We are also given a set M(Q,Q’) of demand pairs, where for each pail
(s, t) e M(Q,Q),seQ, teQ,andd (s, T(Q)) > 4\/N + 4 (where N is the size of the side of oul
original grid G). We refer to the resulting routing problem as 2-square routing. We show that an

a-approximation algorithm to the 2-square routing problem immediately implies an O(«a log n)-
approximation to the original problem. We note that a similar reduction to the 2-square routing
problem has been used in the past, e.g. in [1]. It is now enough to design an O(,/m) = O(\/N) 5
O(nY/#)- approximation algorithm for the 2-square routing problem. Let OPT’ be the optimal solution
to this problem, and let M*c (Q,Q’) be the subset of the demand pairs routed in OPT’. Notice that
|OPT’| < 4m, since each path in the optimal solution must contain at least one vertex of T(Q). We
define a partition X of Q into sub-squares of size (0(/m) x ©(y/m)), and show an efficient

algorithm to find a subset M < (Q,Q”) of (|OPT’|/\/m) demand pairs, with | M| <+/m, so that the
following holds. Let S’and T’ denote the sets of the source and the destination vertices, participating
in the pairs in M, respectively. Then (i) for each square X € X, |V (X) N S’| < 1; (ii) all vertices in
T’can be simultaneously routed to T'(Q") \T'(G) on node-disjoint paths; and (iii) every vertex of A
participates in at most one demand pair. Set M is found by setting up an appropriate instance o
the maximum flow problem. It is then easy to route all vertices in T’ to T'(Q) on paths that are
node-disjoint and internally disjoint from Q. We then use Theorem 2 to complete the routing inside
Q. We now turn to describe the algorithm more formally.

Let (f, x) be the optimal solution to the linear program (LP-flow) on instance (G, M'"), and let OPT
be its value. We show an algorithm that routes Q(OPT, ,/(n*/*- log n)) demand pairs. The algorithm
consists of two steps. In the first step, we reduce the problem to routing between two square sub-
grids of G. We note that a similar reduction has been used in prior work, e. g. by Aggarwal et al.
[1]. In the second step, we show an approximation algorithm for the resulting sub-problem.
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Reduction to the 2-Square Problem

In this step, we reduce the problem of routing on G with a general set M’ of good demand pairs,
to a problem where we are given two disjoint sub-grids (or squares) Q,, Q, of G, and every
demand pair (sj ,tj) has S; € Q, and tj € Q,, or vice versa.

We start by partitioning the set M’ of the demand pairs into dlogNe subsets, M1, . .. ,M“Og N
where

M = {(Sj,tj) e M | gh—1 < doo(Sj,tj) < 2h}.

Foreach 1 <h<[logN], let F, = Z(Sj,tJ)th ¥j , where x; is the amount of flow sent from s, to t;
in the solution to (LP-flow). We let h™ be the index maximizing F, ., so F,.> OPT,,/[logN1. From
now on, we focus on routing the pairs in My,- , and we will route Q(F, . /n*/*) such pairs. Assume

first that h* < 6. In this case, we partition the grid into sub-grids of size at most (256 x 256) with
a random offset, as follows. Select an integer 0 <z < 256 uniformly at random, and use the set

c= {C.ya56: )L 77720 of columns and the set R = { R, 956:}\ Y ~*/%*") of rows to partition the
grid into sub-grids. Let Q be the resulting collection of sub-grids. We define a new LP-solution as
follows: start with the original LP-solution; for every demand pair (sj,tj) ¢ My, set X; = 0, and
f(P) = 0 for all paths P ¢P;. For every demand pair (s]. ,tj) e My, ifsj or tj lie on a row of R ora
column of C, or if they belong to different sub-grids in Q, set X; = 0 and f(P) = 0 for all paths P € P;
. Since for each pair (sj,tj) e Mp«, doo(sj,tj) < 64, it is easy to see that the expected value of the
resulting LP-solution is W = Q(F,,) = Q(OPT,, /logN) = Q(OPT,, /log n). By trying all possible
values 0 < z < 256, we can find a partition Q of G, and a corresponding LP-solution, whose value
is at least W. Notice that for each sub-grid Q € Q, the number of vertices of Q is bounded by
2562, and so the total amount of flow routed between the demand pairs contained in Q is bounded
by 2562, For each sub-grid Q € Q, if there is any demand pair (sj ,tj) e M« with S; ,tj e Q ,anda

non-zero value xj in the current LP-solution, we select any such pair and route it via any path P
contained in Q, which is disjoint from the boundary of Q. It is easy to see that the total number

of the demand pairs routed is Q(W) = Q (OPT,,/log n). From now on, we assume that h* > 6.

For convenience, we denote h by h from now on. Let m = 2/16. We partition the grid into a
collection Q ={Q, | 1<p< LN/m], 1 < q <LN/ml} of disjoint sub-grids, or squares, as follows.
First, partition G into LN/m ] disjoint vertical strips V1, . .., V.. ,,each containing m consecutive
columns of G, except for the last strip, that may contain between m and 2m-1 columns. Next,
partition each vertical strip Vp into LN/m] disjoint sub-grids, where each sub-grid contains m
consecutive rows of V_, except possibly for the last sub-grid, that may contain between m and
2m-1 rows. The width and the hight of each such sub-grid is then between m and 2m-1, where
m < N/16. Notice that for each such grid Qp,q e Q, ifL is the left boundary edge of Qp, ,andLl’is
the left boundary edge of G, then either L c L’, or L and L’ are separated by at least m—(.]L columns.
The same holds for the other three boundary edges. We need the following observation.

> Observation 7. Let (sj, tj) e M, be a demand pair, and assume that S; € Qp q and tj € Qp, o
Then:
5<|p-p'l + 19 -q’| < 34.

Proof. We first show that |p-p’|+|q-q’| 2 5. Indeed, assume otherwise. Then both the horizontal
and the vertical distances between s and t,are less than 8m=§- 2116 =2"1, while ds;,t)= 21 g
contradiction.

Assume now for contradiction that |p—p’| + |q —q’| > 34. Then dw(sj,tj) > 16m = 2", contradicting
the fact that d (s, ,t;) < 2",
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We say that a pair (Q,.,, Q,.») Of squares in Q is interesting iff 5 < [p—p'|+|¢—¢'| < 34. Let Z be
the set of all interesting pairs of squares in Q. We associate an NDP instance with each such pair
Z = (Qp.q, Qp o) as follows. Let M(Z)C M, be the set of all demand pairs (s;,t;) € My where s; € Qy4
and t; € () 4, Or vice versa. We also define a box A(Z), that contains Q,,UQ, ,, and adds a
margin of m around them, if possible. More precisely, let | be the smallest integer, such that
RiN(QpeUQyy) =0, Similarly, band® be the largest integer, such that
Cy N (Qpg UQp ), Cy N (Qpg UQy o) = 0. Similarly, let b and b" be the smallest and the largest inte-
gers, respectively, such that Ry N (Qp.q U Qp o) = 0;. We then let A(Z) be the sub-grid of G
spanned by rows Rumax{1,6-m}, -, Rmin{t'+m N}, and by columns Cuax{ip-m}: -+ Cuin{y+m,N}. FOr every
interesting pair of squares Z € Z, we now define an instance of the NDP problem on graph A(Z),
with the set M(Z) of demand pairs. Let F(Z) be the total amount of flow routed between the
demand pairs in M(Z) in the current LP-solution Fh to our original problem (notice that in our LP-
solution, the fractional routing of the demand pairs in M(Z) is not necessarily contained in A(Z)).
From the above discussion, Y ;.:F(Z) =Q0PTe/logN), We will show an algorithm that routes, for
each Z ¢ Z, Q(F(Z)/n!/*) demand pairs in M(z) integrally, in graph A(Z). However, it is possible
that for two pairs z,z' € =z, A(Z) n A(Z') = 0, and the two routings may interfere with each other.
We resolve this problem in the following step.

From Observation 7, it is easy to see that for each interesting pair of squares 7 c z, the number
of pairs 7' € Z with A(Z)NA(Z') = is bounded by some constant c. We construct a graph H, whose
vertex setis V(H) = {v; | Z € 2}, and there is an edge (vz,vz) iff A(Z)N A(Z') = 0. As observed above,
the maximum vertex degree in this graph is bounded by some constant c, and so we can color H
with c + 1 colors. Let U; C V(H) be the set of vertices of color i. We select a color class i, maximizing
the value " =y, _, F(2). Clearly, F" = Q(OPT,p/logN). For every pair vy, vy of vertices in Ui*, we
now have A(Z) N A(Z’) = ;. In order to obtain an O(n1/4 log n)-approximation algorithm for the
special case where all demand pairs are good, it is now enough to prove the following theorem.

> Theorem 8. There is an efficient algorithm, that, for every interesting pair 7 ¢ Z of squares,
routes O(F(Z)/n'*) demand pairs of M(Z) inside the grid A(Z).

The Rounding Algorithm

From now on we focus on proving Theorem 8. We assume that we are given an interesting pair
Z = (Q, Q) of squares, where the width and the height of each square is bounded by 2m- 1. We
are also given a collection M(7) of demand pairs, that, for convenience, we denote by M from now
on. For each demand pair (s;,t;) € M, we can assume without loss of generality that s; € Q and t; € Q'
Recall that we have a fractional solution (f, x) that routes F* = F(Z) flow units between the demand
pairs in M, in the grid G. Additionally, we are given a square A = A(Z), containing Q and Q’, as
defined above. Recall that for any pair v e Q, v' € Q' of vertices, dy(v,v') > Hm.

From our definition of good demand pairs, it is possible that for a pair (s;t;) € M
doo (57, T(G)) < 4V/N + 4, OF deo(t;,I(G)) < 4VN +4,, but not both. We say that (s, t) is a type
doo(s;,T(G@)) < 4VN + 4,and we say that it is a type-2 demand pair otherwise. Let F1 be the total
flow in the LP-solution between the type-1 demand pairs, and F, the total flow between type-2
demand pairs. We assume without loss of generality that F, < F,, so F, >F */2. From now on we
focus on routing type-2 demand pairs. Abusing the notation, we use M to denote the set of all
type-2 demand pairs.
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We next define a sub-grid Q* of A, obtained by adding a margin of m around the grid Q, if
possible. Specifically, let r,, r, be the rows of G, containing the top and the bottom rows of Q,
respectively. Similarly, let C,,C,. be the columns of G, containing the left and the right columns
of Q, respectively. We let Q* be the sub-grid of G, spanned by Riax{1,6-m}s- -+ Bmin{v,04m} @nd
columns Cyay1 -}y CuinfNy+m). From our definition of A, Q* € A, Moreover, since m —N, and since
we have assumed that all demand pairs are type-2 good pairs, all source vertices corresponding

to the demand pairs in ) are within L., distance at least 4y/m+5 from the boundary of Q*. We
start with the following simple observation.

> Observation 9. Let [/ be a boundary edge of @', such that [’ C T'(G), and let Y CV(L') be any
set of its vertices. Then there is a boundary edge L of Q*, and a set p of |Y| disjoint paths in
graph 4, connecting every vertex of Y to a distinct vertex of L, such that the paths in P are

internally disjoint from Q+ U Q'.

Proof. If the top boundary edge L of Q* is separated by at least m rows from the top boundary
edge of G, then set L = L; otherwise, let L be the bottom boundary edge of Q* - notice that it
must be separated by at least m rows from the bottom boundary edge of G. Let X CV(L) be any set
of |Y| vertices, and let A’ be the graph obtained from A, by deleting all vertices in Q* \ X and Q'
\ Y from it. It is enough to show that there is a set P of | X| = |Y | disjoint paths in AO, connecting

the vertices of X to the vertices of Y. Let z = |X|. From Menger’s theorem, if such a set of paths
does not exist, then there is a set J of at most z - 1 vertices, such that in A0 \ J there is no path

from a vertex of X \ J to a vertex of Y \ J. But from our definition of Q%,Q’, and A, it is clear that no
such set of vertices exists.

Let r be the smallest integral power of 2 greater than 4\/m+4, so r = ©(/m). Our next step is to
partition Q into a collection X of disjoint sub-grids of size (r x r) each. For 1<p,q<m/r, we let X,
be the sub-grid of Q, spanned by rows R,_1),11,--., Ry and columns C,_1),41,...,Cq of Q. We

then let X =1{X,,|1<pg<m/r}, The next theorem is key to finding the final routing.

» Theorem 10. There is a subset M; C M of Q(F*/n'/*) demand pairs, such that every vertex of
QuQ' participates in at most one demand pair. Moreover, if S, and T, denote the sets of all
source and all destination vertices of the pairs in My, respectively, then:

For every square X, , € X, at most one vertex of X, 4 belongs to S,; and

There is a boundary edge L' of Q', with L' CT(G), and a set p, of node-disjoint paths in graph @',
connecting every vertex of T, to a distinct vertex of L'.

Proof. Let U be the union of the boundary edges L' of Q', with I CT(G). We build a flow network
N, starting with the graph '. We add a source vertex a, that connects to every vertex in U with
a directed edge. Let §C() be the set of all vertices participating in the demand pairs in M as
sources. Observe that each vertex s € S may participate in several demand pairs in M. We add
every vertex s € S to graph ), and for each demand pair (s, t) € M, we connect t to s with a
directed edge. Next, for each square X,q€ X, we add a vertex Up7q, and we connect every
vertex to X,,c X with a directed edge. Finally, we add a destination vertex b, and connect

every vertex Up,q for1 <p,q<m/rto b with a directed edge. We set all vertex-capacities (except for
those of aand b) to 1.

We claim that there is a valid flow of value Q(F*//m) from a to b in N. Indeed, consider the
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multicommodity flow between the demand pairs in M, given by our current LP-solution. For each
(sj,t;)-pairin M, we send x; /Ar flow units on the edge (t;, s;) in N'. For each flow-path p ¢ p;,
notice that P must contain some vertex of U. Let v be the last such vertex on P (where we view
P as directed from S; to tj), and let P’ be the sub-path of P from v to tj. We send f(P)/4r flow units
on every edge in P’. For every vertex v € U, we set the flow on the edge (a, v) to be the total flow
leaving the vertex v; for each vertexs € S, with s € X o Ve set the flow on the edge (s, u q) to be
the total amount of flow entering s. The flow on edge (u b) is then set to the total amount of
flow entering u, . Notice that for each square X s every ﬂow -path originating at a vertex of S N
X_ —must cross the boundary T'(X ) of X that contains at most 4r vertices. Therefore, the
total amount of flow in the orlg/na/pLP solution leaving the vertices in SnX,, is at most 4r. It is

now easy to see that we have defined a valid a-b flow of value F =Q(F*/\/m).

From the integrality of flow, there is an integral flow of the same value in \. Let P be the set of
paths carrying one flow unit in the resulting flow. Then there is a boundary edge L' of Q', such

that [/ CT(G), with at least F/4 of the paths in P containing a vertex of L'. Let P'CP be this set of

paths. We are now ready to define the final set M, of the demand pairs, and the corresponding
set p, of paths. Consider some path P cP’, and let (t, s) be the unique edge with (s,t) € M on
this path. We then add (s,t) to M,. Let P' be the sub-path of P, starting from the last vertex on P

that belongs to L', to vertex t. We add P' to P 1 This finishes the definition of the subset M; of
demand pairs, and the corresponding set P, of paths.

If IMi| > \/m, then we discard pairs from M, until |M;| </m holds, and we update the sets S, T
and P, accordingly.

For w,w' € {0,1}, let Sww’ be a subset containing all vertices s € Si lying in the squares X, o
where p =w mod 2 and ¢ = w' mod 2. Then there is some choice of w,w’ € {0,1}, so that
|Swar| > |S1]/4. We let §, =S, for this choice of w, w', and we define My={(s{) e M;|s€ S}, and T, as the
set of all destination vertices for the pairs in M,. Let P, C P, be the set of paths originating from
the vertices of T,. Let Y be the set of endpoints of the paths in P, that lie on the boundary edge
L' of Q'. Finally, from Observation 9, there is a boundary edge L' of Q*, a set Y' of |Y| vertices of L,
and a set P of disjoint paths in A, connecting every vertex in Y to a distinct vertex of Y', so that
the paths in P; are internally disjoint from @+ u (). By concatenating the paths in P, and P;, we
obtain a new set P of paths, connecting every vertex of T, to a distinct vertex of Y. Denote

Mz = {(s;.1;)}}X, and let u; € Y' be the vertex where the path P; ¢ P*, originating at vertex t,,

terminates. Notice that all vertices in S, are now at the L1-distance at least r > 4/m +4 from
each other, and at distance at least 4,/m + 5 from the boundaries of Q+, and |Mi| —pm. From
Theorem 2, we can efficiently find a set Y of disjoint paths in graph Q*, connecting every vertex

s; € Sy to the corresponding vertex uj € Y'. By concatenating the paths in P* and Y, we obtain a
set of paths routing all pairs in M.

Notice that from the above discussion, |Ms|=min{Q(ym),Q(F*/y/m)}. It is easy to see that F*<im,

since every flow-path routing a pair in M must cross the boundary of Q'. Therefore, |Ms|=Q(F*/ym),
Since m < N = /n, our algorithm routes Q(F*/n'/*) demand pairs.

4.2. Routing the Bad Pairs
The goal of this section is to prove the following theorem.

> Theorem 11. Let (G, M) be an instance of the NDP problem, where G is an (N x N) grid, and
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J
SjaI‘(G)),doo(tij(G)) < d*, for some parameter 1< d* < N/4. Then there is an efficient

algorithm that finds an O(d*)-approximate solution to the NDP instance (G, M).

M = {(s1,t1),...,(sk,tx)}- Assume further that for each demand pair (s;,t;), both
doo

Notice that by setting 4 = 4/N + 5, S0 that d* = ©(n'/*), we obtain an 0(n'/*)- approximate solution
for NDP instances on grid graphs, where all demand pairs are bad.

The rest of this section is dedicated to proving Theorem 11. Let T be the set of all vertices
participating in the bad demand pairs. We call the vertices in T terminals. Let L, L,, L,, L, be the
four boundary edges of the grid G. Notice that a terminal t € T' may be within distance d from up
to two boundary edges. For each terminal t € T, we let L(t) be any boundary edge of G, such
that d(t,V(L(t))) < d*. We now partition all bad demand pairs into 16 subsets: for 1 <p,q<4,, set
M, contains all pairs (s;,t;), where L(s;) = L, and L(t;) = L,. Let OPT be the optimal solution to
the NDP instance. For every possible choice of 1<p,q<4, let OPT,, be the optimal solution
restricted to the pairs in M g Clearly, there is a choice of p and q, such that at least |OPT|/16
of the demand pairs routed in OPT belong to Mp,q, and so |0PT,,|>OPT/16. For each choice of
values 1 < p, g <4, we show an algorithm that routes ( |OPTp, ql/d*) demand pairs in M g We
then take the best of these solutions, thus obtaining an O(d*)-approximation algorithm.

Fix some 1< p, q < 4. We consider three cases.

The first case happens when Lp and L g are two distinct opposing boundary edges of G. We
assume without loss of generality that Lp is the top, and L q is the bottom boundary of G. We say
that a subset M' C MM of demand pairs is a monotone matching, if the following holds. Let S’ be
the set of all source vertices, and T' the set of all destination vertices, participating in the pairs
in M’. Then:

* All vertices of S’ lie in distinct columns of G;

* All vertices of T’ lie in distinct columns of G;

* Every vertex of S’ UT' participates in exactly one demand pair; and

* For any two distinct pairs (s;,t;),(s;,t;) € M', col(s;) < col(s;) iff col(t;) < col(t;).
The following observation is immediate.

> Observation 12. Let M' C M, , be any monotone matching with M' C M, ,, . Then there is an
efficient algorithm to route all pairs in M’ in graph G.

Our algorithm then simply computes the largest monotone matching M' C M, ,, using standard
dynamic programming: We maintain a dynamic programming table , that contains, for all
0 <z,y <N, an entry 1I (x, y), whose value is the size of the largest monotone matching
M(x,y) c Mp,q,, such that every source vertex s participating in pairs in M (x, y)
has 1 < col(t) <y., and every destination vertex t participating in pairs in M (x, y) has 1 —col(t)
—y. We fill the entries of the table from smaller to larger values of x + y, initializing 11 (x, 0) = 0
and 11 (0, y) = 0 for all x and y. Entry 11 (x, y) is computed as follows. If there is a pair (s, t)
€ My, 4, With col(s) = x and col(t) =y, then we let 11 (x, y) be the maximum of 1 (x - 1,y - 1)
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+1, Ti(x -1, y), and Ti(x, y - 1). Otherwise, Ti(x, y) is the maximum of 1 (x - 1, y), and 11 (x, y -

1). The size of the largest monotone matching M' € M, is then stored in (N,N), and we can use
standard techniques to compute the matching itself. Finally, we show that there is a large enough

monotone matching M' C M,,.
> Lemma 13. There is a monotone matching M’ C M, , of cardinality Q(OPT,,/d*).

Proof. For every source vertex s of a demand pair in M _ _, let P(s) denote the segment of the
column in which s lies, from the first row of G to s itself. Similarly, for each destination vertex t of
a demand pair inM 5,q" let P(t) denote the segment of the column in which t lies, from t to the
last row of G.

Consider the solution OPT, , and let M*CM,, be the set of the demand pairs routed in it. For
each pair (s, t) € M?*, let P, € OPT,, be the path routing this demand pair in the solution. We say
that two demand pairs (s, t) and (sj, t].) in M* have a conflict iff either P, contains a vertex of
P(s].)UP(tj), or PJ. contains a vertex of P(s;) U P(t)).

Let H be a directed graph, that contains a vertex v, for every pair (si,t;) € M", and a directed edge
(vj, v].) iff path P, intersects P(sj) or P(t,). Notice that the length of every path P(sj) or P(tj) is
bounded by d, and so every vertex of H has in-degree bounded by 2d. Therefore, any vertex-

induced sub-graph H’ of H with z vertices has at most 2d*z edges, and contains at least one
vertex whose degree (including the incoming and the outgoing edges) is at most 4d*.

We now construct the set M’ of demand pairs as follows. Start with M’ =0, While H is non-empty,
let v,be any vertex of degree at most 4d*. Delete v;and all its neighbors from H, and add the pair

(s, t) to M'’. When this procedure terminates, it is easy to see that M’ contains at least
|OPT,,|/(4d" + 1) = Q(|OPT,4|/d*) demand pairs. Moreover, if (s, t) and (sj, t].) are distinct pairs in
M, then there is no conflict between (s, t) and (s, t). In particular, this means that col(s;) = col(s;)
and col(t;) = col(t;). Moreover, if we assume that col(s;) < col(s;), then col(t;) < col(t;) must hold:
this is since the union of P,,P(s;) and P(t;) partitions the face defined by T'(G) into a number of sub-
faces, and both S and tj must be contained in a single sub-face, as the path Pj cannot intersect
the paths P;, P(s;) and P(t;).

This concludes the analysis of the algorithm for the case where L o and L qgare two distinct opposing
boundary edges of G. The case where L - and L gare two adjacent boundary edges of G is dealt
with very similarly. Finally, we consider the case where L p= L . Assume without loss of generality

that L, is the bottom boundary edge of the grid. We say that a subset M CM,, js a nested
matching, if the following holds. Let S’ be the set of all source vertices, and T’ the set of all
destination vertices, participating in the pairs in M’'. Then:

All vertices of S’ lie in distinct columns of G;
All vertices of T’ lie in distinct columns of G;
Every vertex of ' UT' participates in exactly one demand pair; and

For any two distinct pairs (si,t;),(s;,t;) € M', with col(s,) lying to the left of col(sj), either both
col(si), col(ti) lie to the left of both col(sj), col(tj), or both co/(sj), col(tj) lie between col(s,) and
col(t;), or both col(s,), col(t,) lie between col( t].) and col(sj).
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It is immediate to see that any nested matching M c M,,,, with |M’| < N/2 can be routed

efficiently in G. As before, we can find a largest-cardinality nested matching M' C M, , using
standard dynamic programming techniques. The following lemma will then finish the proof.

> Lemma 14. There is a nested matching M' C M, , of cardinality Q(OPT, 4/d").

Proof. We construct the paths P(s), P(t), the graph H” and the matching M’ corresponding to an
independent set in H” exactly as in the proof of Lemma 13. As before, |M’'| = (OPTp, q'/d*).
Moreover, if (s, t,) and (sj, t].) are distinct pairs in M’, then there is no conflict between (s, t) and
(sj, t].). As before, this means that co/(s].) = co/(s].) and col(t) = col(t].). Assume now that co/(sj)
lies to the left of co/(sj ). Then the union of P, P(s,) and P(t,) partitions the face defined by I'(G) into
a number of sub-faces, and both S and tj must be contained in a single sub-face, as before. In
this case, this means that either both col(s,), col(t) lie to the left of both co/(s].), co/(tj), or both
co/(sj), co/(tj) lie between col(s;) and col(t,), or both col(s), col(t,) lie between col(t].) and col(s].).

4.3. Putting Everything Together

Our algorithm for an input NDP instance (G, M), where G is an (N x N) grid, applies the algorithm
from Section 4.1 to the set M’ of the good demand pairs, and the algorithm from Section 4.2 to
the set M" of the bad demand pairs, and returns the better of the two solutions. Since each of the
two algorithms achieves an O(n*/# log n)-approximation to the corresponding problem, and since
at least half of the demand pairs routed in the optimal solution are either all good pairs, or all bad
pairs, we obtain an O(n*# log n)-approximation overall.

5. APX-Hardness Proof

In this section we prove that NDP does not have a (1 + ¢)-approximation algorithm on grid
graphs, for some fixed 6 > 0, unless P = NP. We perform a reduction from the 3SAT(5) problem.
In this problem we are given a 3SAT formula ¢ on n variables and 5n/3 clauses. Each clause
contains exactly 3 distinct literals and each variable participates in exactly 5 different clauses. We
say that ¢ is a Yes-Instance if it is satisfiable. We say that ¢ is a No-Instance with respect to

some parameter €, if no assignment satisfies more than an € -fraction of clauses. The following
well-known theorem follows from the PCP theorem [7, 6].

» Theorem 15. Thereis a constant € : 0 < € < I, such that it is NP-hard to distinguish between Yes-Instances and
No-Instances (defined with respect to ) of the 3SAT(5) problem.

Let ¢ be the input 3SAT(5) formula, defined over the set {Xy cey, xn} of variables, and a set C,
...,C, ofclauses, where m = 5n/3. Our graph G is the (N x N) grid, where N = (m + 1)(4m + 6).
The set M of demand pairs consists of three subsets: set M, representing the variables of ¢, set

M, representing the clauses, and set M, of additional auxiliary pairs. We now define each set of
the demand pairs in turn.

LetI, ..., I, beany set of mutually disjoint sub-paths of the top row R, of the grid, each
containing exactly 13 vertices of R,. For 1 < j <n,, let S; be the vertex lying exactly in the middle

My = {(5;,t;) (55,85) | 1 < <n}

let V (j, F) be the set of vertices lying on IJ. between S; and t’;. The intuition is that, since the
paths routing the demand pairs are required to be completely disjoint, for each 1<j<n, we can
only route one of the two pairs: (sj, tj) or (sj, t’;). The routing of the former pair is interpreted as
assigning the value 'F’ to variable Xy and the routing of the latter pair is interpreted as assigning
the value 'T’ to variable X Intuitively, in the former case, all vertices of V (j, T) will be "blocked”
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by the path routing (sj, tj), while in the latter case all vertices of V (j, F) are “"blocked”.

We now turn to define the second set, M, of the demand pairs. Let R = R, , . be
the row lying within distance 4m + 6 from the bottom row of the grid. Lety,, ...,y be any set
of m vertices on R, ordered from left to right, so that the distance between every consecutive pair
is at least 4m + 5, the distance between Y, and the left boundary of G is at least 4m + 5, and the
distance between ym and the right boundary of G is at least 4m + 5. Since the grid size is N xN,
and N = (m+ 1)(4m+ 6), we can find such vertices y,, . . ., y,. Foreach 1<h<m, vertex yh will
serve as a source vertex corresponding to the clause C,. We will associate it with three destination

vertices, :},:2,23,, as follows. Assume that Cy, =, V ly, V l,.. For 1<i<s, let Tn, be the variable

corresponding to the literal {},,. If fhi = Zpn,, then we let Z\, be some vertex in set V (h, T), and

otherwise we let z;z be some vertex in set V(h;,T). We select the vertices z;z in such a way, that

all vertices inset 7z ={z, |1 <h< m.:l <i< 3} are distinct. Since each variable participates in exactly

5 clauses, and each set V (j, T), V (j, F) contains 5 vertices, we can ensure that all vertices in Z
are distinct. We define:

My = {(yn, 1), Wn: 22), (g, 23) | L < R <m

Before we define the third set of the demand pairs, we provide some intuition. As mentioned
above, we associate each assignment in {T, F} to each variable X; with the routing of

either (s;,t;) or (s;,t;) along the corresponding segment of the first row. For each clause C,, if
at least one of its literals Uy, is satisfied, we will route the corresponding demand pair (si, ti) (we
discuss this in more detail later). However, in the No-Instance case, a solution can “cheat” by
routing the pairs (sj,t;), or (s;,t:) differently: for example, we can route them on a path that goes

around some of the sources y,. In order to avoid this, we create an artificial "bottleneck” by
adding a new set of demand pairs. Recall that v(i, j) is a vertex lying in the intersection of row Ri

and column C, of the grid. The last set Ms of demand pairs contains 8m demand pairs {ai, i3,
where for 1 < i < 8m, we define a; =v(m+4+im+1), and b; = v(m + 4 +1i, N). In other words, the
ith demand pair in set M3 consists of the (m+ 1)st and the last vertex of the row R, 4.;. The final

set of the demand pairs is M=M,UM,UM;. This completes the description of the NDP instance. We
now analyze its properties.

Completeness
Assume that the 3SAT(5) formula ¢ is a Yes-Instance. We show that in this case we can route
9m + n = 16n demand pairs. Consider the assignment f:{xz,...,z,} = {T,F} that satisfies ¢.

Foreach 1 < h < m, if T; is assigned the value 'T’, then we route the pair (si,t;) via the segment

of the row R, between these two vertices, if T is assigned value F, then we route the pair (s, t,)
via the corresponding segment of R,. For each pair (a, b;) € M;, we route (a, b)) via the segment
of row R meas CONNECting these two vertices. Finally, we define the routing of m demand pairs in
M2. For each clause C,, let 'h be any of the literals of C, that is satisfied by the assignment f, and

let z, = Z;L be the destination vertex corresponding to €3, so that (yn,z1) € My. We will route the

pairs {(yn, Zh)_hghgm'

In order to do so, we define three sub-grids of G: B, is the sub-grid spanned by rows R,, . . .,
R 5 and all columns of the grid; B, is the sub-grid spanned by rows Roisr s Ropiy and

columns ¢, ....C, of the grid; and B, spanned by rows R, Ry and all columns of the
grid.

m+d
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Foreachl < h < m, let e, be the unique vertical edge of the grid incident on vertex zy, , and let
z;L be its other endpoint. Let S;={z,|1<h<m}, SO S , contains m distinct vertices on the top
rowof B, andletE,={e, | 1 <h<=m}. Let S, be the set of m vertices on the top boundary of B,,.
Then the vertices of S , also lie on the bottom boundary of B , and from Observation 1, there is
a set P, of disjoint paths in B,, connecting all vertices of S, to the vertices of S,, so that the
paths in P, are internally disjoint from V(R, U R,,.5)- Let S, be the set of m vertices on the bottom
boundary of B,, and let P, be the set of the columns of B,, so P, is a set of m paths, connecting
all vertices of S, to the vertices of S,, in graph B,. Finally, consider the graph B,, and observe
that S, is a set of m distinct vertices lying on the top boundary of B,, while {y, | 1I<h <m}is a
set of m vertices lying at Lo.-distance at least 4m+5 from each other, and from the boundary of
B,. From Theorem 2, we can route any matching between the vertices of S, and the vertices of
{yn |1 <h <m}in graph S, Let P! be the set of paths obtained by concatenating E' P, Ps-
Then P’ is a set of disjoint paths connecting the vertices of {zn [ 1< h <m} to the vertices of S .
We denote the vertices of Ss by {#/,...,z]}, where z;l’ is the vertex that serves as an endpoint
of the path of P! originating at z,. We can now construct a set P, of disjoint paths in B, routing

the pairs . By concatenating the paths in P’ and P,, we obtain the final routing of the pairs in
{(y,, z,) | 1 < h<m}. Altogether, we route n demand pairs in MI, all 8m demand pairs in M3,
and m demand pairs in sz routing n + 9m = 16n pairs in total.

Soundness

Let 5 = (1—e€)/200, where is the constant from Theorem 15. Assume that is a No-Instance, so
no assignment can satisfy more than m clauses of ¢. We show that the value of the optimal
solution of the corresponding NDP problem is at most (1-6)-16n. Assume otherwise, and let P

be a set of paths, routing more than (1—0)- 16n demand pairs.

Our first observation is that at least 6m of the demand pairs in M, must be routed by P.
Indeed, assume otherwise. Then ‘P routes at most n pairs in M py fewer than 6m pairs in M o
and at most m pairs in MZ. In total, P routes at most n + 7m = 38n/3 < (1— & ) - 16n pairs,
since 6 < 1/200. Therefore, at least 6m of the demand pairs in M3 are routed. Let i be the
smallest index, so that (a, b)) is routed in ‘P, and let P ¢ P be the path routing (a, b). Let U be
the set of vertices of column C_ , (the column where the sources of the pairs in M lie), that
belong to rows Rywvy R9m+4. We use the following observation.

> Observation 16. There is a contiguous sub-path P’ of P, containing b;and some vertex of U,

such that P’ is internally disjoint from U, and it does not contain any vertex of row R = Ry_4m_¢.

Proof. If P does not contain any vertex of R, then, since it must contain at least one vertex of
U (the vertex a,), such path ‘P’ clearly exist. Therefore, we assume that PnR=10;. Let v be the
last vertex of P lying on row R, where we view P as directed from a,to b. Let P* be the segment of
Pfromvtob.

We claim that p*nU = 0. Indeed, assume otherwise. Let C] be the column in which v lies and let Q
be the segment of Cj from v to the bottom vertex of Cj If C] is the last column, then path P*

separates all vertices in 14; }flﬁ from all vertices in {tj}?:i Ly contradicting the fact that at least
6m demand pairs in M3 are routed, and i is the smallest index for which pair (a, b)) is routed.
Therefore, o is not the last column. The union of Q and P partitions the face defined by 1(G) into
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a number of sub-faces. Let F, be the sub-face containing the top left boundary of the grid, and let

F, be the union of the remaining sub-faces. Since P*U() is disjoint from U, all vertices {aj}ifl

m

belong to F,, while the vertices {tj}izi ., belong to F,. Therefore, all paths of ‘P routing the pairs in
M3 must intersect Q, while Q contains only 4m + 7 vertices, a contradiction. We conclude that

P*NU =. Let u be the last vertex on P that belongs to U. We can then let P’ be the segment of
P between u and b..

Let v* be the endpoint of P’ lying in U, and let R’ = row(v*). Let I be the sub-path of R’ between
v* and the first vertex of row R’ (excluding v*). Since path P’ is disjoint from row R, it is easy to
see that every path in ‘p that routes a demand pair in M, has to contain at least one vertex of I.

We partition the set of variables of ¥ into three subsets. Set X 4 contains all variables Xy such
that none of the pairs (s;,t;), (s;,t;) is routed by p; x, contains all variables X, such that one of

the pairs (sj, tj), (sj, t'j) is routed by some path o;ep, and |Q;nI| > 2. Set X contains all remaining
variables. We need the following three observations.

> Observation 17. |X,| < 16in.

Proof. Assume otherwise. Then P routes fewer than n(l-160) pairs of Mi, at most 8m pairs of M,

and at most m pairs of Ms. In total, this is fewer than n(1 —160)+9m = 16n(1—0) pairs, a
contradiction.

> Observation 18. |Xy| <8in.

Proof. Assume otherwise. As observed above, if (y.2) € My js routed by P via some path Q, then
QnI=0. Since |I| =m, the number of pairs in M, routed by P is less than m”16n, and the total
number of pairs routed is smaller than n+ (m—160n)+8m = 16n(1 - 4)

> Observation 19. Let z; € X3 be some variable, and let Q € P be the path originating at S; - IfQ
terminates at tj, then no path of ‘P, routing a demand pair in My, may contain any vertex of V (j,

T), and if Q terminates at t;, then no path of P, routing a demand pair in My, may contain any
vertex of V (j, F).

Proof. Assume that Q terminates at tj: the proof for t’; is symmetric. Since |INQ| <2, the path Q,
together with the sub-path of R, between tj ands ' forms a closed curve L in the natural drawing
of the grid, such that all sources of all pairs in M, lie outside L. Therefore, the paths of P originating
from the sources of the demand pairs in My cannot contain the vertices of V (j, T).

We now define an assignment to the variables of @ that satisfies more than m clauses of @,

leading to a contradiction. The assignment is defined as follows. For each variable t; € X3, let Q; € P

be the path originating at S: If Cj terminates at tj., then we assign the value 'F’to X; otherwise we
assign the value 'T’ to it. All other variables are assigned arbitrary values.

Let C be the collection of clauses C,, such that there is a path originating at vertex y,in P. Itis
easy to see that IC| > m —166n, since otherwise ‘P contains fewer than
n+8m+ (m—166n) = 16n(1 - 0) paths. Let C' C C be the subset of clauses containing the variables
of X,uUX,. Since each variable participates in at most 5 clauses, from Observations 17 and 18,
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[C'| <5-246n =1200n. Let C*=C\C'. Then |C*| >m—1366n > em. We claim that every clause C, c C* s
satisfied by our assignment. Indeed, let p e P be the path originating at y,, and let ZZ be its
other endpoint. Assume that the corresponding literal ¢ h; corresponds to variable X From our
definition of ¢+, x; € Xs. Let P'e P be the path originating from S If 2, € V(j,T), then £, = X From
Observation 19, ‘P’ terminates at t/;, and variable X; is assigned the value 'T’. If =, €V(j,F), then
&, =7;, From Observation 19, P’ terminates at tj, and variable X; is assigned the value 'F’. In
either case, the assignment to X; satisfies the clause C,

To conclude, we have shown an efficient algorithm, that, given a 3SAT(5) formula ', constructs
an instance (G, M) of the NDP problem, where G is a grid graph, whose size is polynomial in the
size of . If @ is a Yes-Instance, then there is a solution of value 16n to the NDP instance, and
if 6is a No-Instance, then no solution routes more than 16n(1 -§) demand pairs in the NDP
instance, for some constant 6. Since it is NP-hard to distinguish the Yes- and the No-instances
of 3SAT(5), we conclude that no efficient algorithm can obtain a better than (1 - )-approximation
for NDP on grids, unless P = NP.

6. Integrality Gap of (LP-Flow) for Good Pairs

We prove that the integrality gap of (LP-flow) is Q(nl/S) even when all of the terminals are far
from the grid boundary. We note that the family of instances that we construct here was
previously used by Cutler and Shiloah [16], to provide a lower bound on the size of permutation
layouts. Our analysis also closely follows theirs.

Given any integer p > 10, let k = p? and N = 6k. We show that the integrality gap of (LP-flow) on
the (N x N) grid G, where all terminals are within distance at least N/6 from T'(G) is Q(k'/*) = Q(n'/%),
where n = N? is the number of vertices in the grid.

In order to define the demand pairs, we let S be any set of k consecutive vertices on row R2k of
G, where all vertices are at distance at least 2k from both the left and the right boundary of G,
and define a set T of k consecutive vertices on row R, similarly. We partition the set S into p
subsets S PR Sp of p consecutive vertices each, where for 1 < i, j < p, the jth vertex in set S,
is denoted by S, Similarly, we partition T into p subsets T,, . . ., Tp of p consecutive vertices
each, and for 1 <i,j <p, the jth vertex in set T, is denoted by tl.,j . The set M of the demand pairs
is then:

M ={(si 1) [ 1< 0,5 < p}.

It is easy to see that there is a solution to (LP-flow) of value k/3: for each pair (s,., 7 tj/ ) we
send 1/3 flow unit on the path P, lying in the union col(s; ;),col(t;;) and R;,;, that connects S,
to t, . We next show that the value of any integral solution is O(k?*?), thus establishing the
integrality gap of Q(k/4)..

In our analysis we use the notions of graph drawing and graph crossing number. A drawing of
a graph H in the plane is a mapping, in which every vertex of H is mapped into a point in the
plane, and every edge into a continuous curve connecting the images of its endpoints, such
that no three curves meet at the same point, and no curve contains an image of any vertex
other than its endpoints. A crossing in such a drawing is a point where the images of two edges
intersect, and the crossing number of a graph H, denoted by cr(H), is the smallest number of
crossings achievable by any drawing of H in the plane. We use the following well-known theorem
[2, 23].
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3
> Theorem 20. For any graph H = (V, E) with |E| > T|V|, cr(H) > QLf\L\?'

Let OPT denote the optimal integral solution for the instance (G, M), let M* C M be the set of the
demand pairs routed by OPT, and let x = |OPT|. We define two bipartite graphs. The first bipartite
graph, H = (S, T, E*) is defined over the sets S and T of the source and the destination vertices o

M, and it contains an edge e = (s, t) for every pair (s,t) € M*. The second graph is H' = (A,B,E)

where A={v,...,v,}, B={w,...,u,}, and E' contains all edges (vi,u;), where (s ;t;;) € M*. The
following claim is central to our analysis.

» Claim 21. There is a drawing of H' with at most 2px crossings.

(a) before (b) after

Figure 5. Altering the drawing around Si

We prove Claim 21 below, after we complete the analysis of the integrality gap here. If |E'| < 14p,

then |OPT| = O(Vk) and we are done, so we assume that |E| > 1{. Then from Theorem 20, c(H') > 11%22'

while from Claim 21, ct(H') < 2px. Therefore, == 0(p*?) = 0(k**). It now remains to prove Claim 21.

Proof of Claim 21. Notice that the natural drawing of the grid G, together with the solution OPT
to the NDP instance gives a planar drawing « of the graph H in the plane. Foreach 1 <i<p,let S; C S;
be the set of the sources that have an edge incident to them in E*, and define T! CT, similarly. Let
z; = |S)| and y; = |T}|. For each 1 <i <p,if 2; =0,, then the vertex v, of i, corresponding to S,
is an isolated vertex, and we can draw it anywhere. Otherwise, let Si,j € Si be any vertex. We
draw v, at ¢(s;;). Let I(i) be the segment of row R,, containing the vertices of S;, and no other

vertices. Let L, be a very thin strip (of height 1/10) around the segment I(i) (see Figure 5). We
alter the drawings of all edges in E*, originating at the vertices of S0i, so that they now originate

at cp(si‘,j), by re-routing them inside the strip L. Since the number of paths in OPT containing the
vertices of S, is bounded by p, it is easy to do so, by introducing at most px; crossings. We
perform the same transformation for the sets T, of destination vertices, and obtain a drawing of

the graph HO with at most pY ., (z; + i) < 2pz crossings.
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7. Approximation Algorithm for EDP on Wall Graphs

In this section we show that the algorithm from Section 4 can be adapted to give an O(n# - log

n)-approximation for EDP on wall graphs of width and height N = Q(./n)- In order to construct a
wall W of height h and width r (or an (h x r)- wall), we start from a grid of height h and width 2r.
Consider some column C, of the grid, for 1< j <r, and let e{, e;', ey 61}1 be the edges of Cj, in the
order of their appearance on CJ., where €j 1 is incident on v(1, j). If j is odd, then we delete from
the graph all edges ej i where i is even. If j is even, then we delete from the graph all edges eji

where i is odd. We process each column C. of the grid in this manner, and in the end delete all
vertices of degree 1. The resulting graph is a wall of height h and width r, that we denote by W
(See Figure 1).

Let E, be the set of edges of W that correspond to the horizontal edges of the original grid, and let
E, be the set of the edges of W that correspond to the vertical edges of the original grid. The sub-
graph of W induced by E | is a collection of h node-disjoint paths, that we refer to as the rows of
W. We denote these rows by Ry---/Ry, herefor 1<i<h,, R;is incidenton v(i, 1). Let Vv, denote
the set of all vertices in the first row of W, and V, the set of vertices in the last row of W. There
is a unique set C of r node-disjoint paths, where each path (' ¢ starts at a vertex of V,, terminates
at a vertex of V,, and is internally disjoint from V, UV,. We refer to these paths as the columns
of sub-graph T(W)=R,UC,UR,UC, of W is a simple cycle, that we call the boundary of W.

For every vertex v € V(W), we let col(v) and row(v) denote the column and the row of W to which
v belongs. As before, for a pair u,v € V(W) of vertices, we define:

doo (u,v) = max {| col(v) — col(u)|, | row(v) — row(u)|},
and for a vertex v and a subset U C V(W) of vertices, we let d(v,U) = minyey {doo(u,v)}.

Assume now that we are given an (N x N)-wall graph G = (V, E), so n=|V|=6(N?), and a
collection M = {(si, ti)}f:1 of demand pairs. As before, we say that a demand pair (s, t,) is bad if

both du(si,T(G)),ds(t;,T(G)) < 4/N +4,, and we say that it is good otherwise. Let M.M'CM denote
the sets of the good and the bad demand pairs in M, respectively. We find an approximate

solution to each of the two sub-problems, defined by M’ and M", separately, and take the better
of the two solutions.

The algorithm for the bad pairs remains exactly the same as the algorithm from Section 4.2. We
now focus on the problem defined by the set M’ of the good pairs. Let G’ be the (N xN)- grid
obtained from G, by contracting, for each 1 <i,j <N, the unique edge ¢ € R; N C;, and consider the
NDP problem instance (G',M'). Any collection P' of node-disjoint paths in G', routing a
subset M C M' of the demand pairs immediately gives a collection p" of edge-disjoint paths in G,
routing the same subset of the demand pairs. Moreover, it is easy to see that there is an LP-
solution to (LP-flow) on instance (G', M') of value OPT /2, where OPT" is the optimal solution for
the EDP instance (G, M'). Indeed, for every path P ¢ OPT', we simply set f(P’) = 1/2, where PO is
the path of G’corresponding to the path P of G, and for every demand pair (s 5 t].) routed by OPT’
we set X; = 1/2. It is immediate to verify that this is a feasible solution to (LP-flow) on NDP
instance (G', M"), of value OPT72. We then use the algorithm from Section 4.1 to find an O(n/* -logn)-
appsroximation solution to (G', M'), which in turn gives an o(n'/# - log n)-approximation solution
to the EDP instance (G, M’).
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