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ABSTRACT

Maximum constraint satisfaction problem (Max CSP) is a problem of great inter-
est in approximation algorithms since it encapsulates many natural optimization
problems. The goal is to find an assignment to all the variables that satisfy as
many constraints as possible. In this work, our primary focus is the case where
each constraint depends on exactly k = 2 variables and the large alphabet size.
This case has been intensively researched regarding the hardness of approxima-
tion and multi-prover games.

Keywords: Maximum constraint satisfaction problem, Approximation algo-
rithms, Approximation hardness

1. Introduction

Maximum constraint satisfaction problem (Max CSP) is a problem of great interest
in approximation algorithms since it encapsulates many natural optimization
problems; for instance, Max k-SAT, Max-Cut, Max-DiCut, Max k-Lin, projection
games, and unique games are all families of Max CSPs. In Max CSP, the input is
a set of variables, an alphabet set, and a collection of constraints. Each constraint’s
domain consists of all the possible assignments to a subset of variables. The
goal is to find an assignment to all the variables that satisfies as many constraints
as possible.

In this paper, our main focus is on the case where each constraint depends on
exactly k = 2 variables and the alphabet size is large. This case is intensively
researched in hardness of approximation and multi-prover games.

For Max 2-CSP with large alphabet size, the best known polynomial-time
approximation algorithm, due to Charikar et al. [10], achieves an
approximation ratio of O((nq)1/3) where n is the number of variables and q is the
alphabet size. On the other hand, i t is known that, there is
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no polynomial-time -approximation algorithm for Max 2-CSP unless 

[16]. Moreover, it is believed that, for some constant c > 0, no polynomial-time O((nq)c)-
approximation algorithm exists for projection games, a family of Max 2-CSP we shall introduce
later, unless P = NP [15]. This is also known as the Projection Games Conjecture (PGC). As a
result, if the PGC holds, one must study special cases in order to go beyond polynomial
approximation ratio for Max 2-CSP.

One such special case that has been particularly fruitful is dense Max 2-CSP where density is
measured according to number of constraints, i.e., an instance is -dense if there are n2

constraints. Note that, for convenience, we always assume that there is at most one constraint
on a pair of variables. In other words, we form a simple graph by letting vertices represent the
variables and edges represent the constraints. This is the interpretation that we will use throughout
the paper. According to this view, n is the average degree of the graph.

In 1995, Arora, Karger and Karpinski [3] invented a polynomial-time approximation scheme
(PTAS) for dense Max 2-CSP when the density  and alphabet size q are constants. More specifically,
for any constant , the algorithm achieves an approximation ratio  and runs in time

. Unfortunately, the running time becomes quasi-polynomial time when q is not constant.

Another line of development of such PTASs centers around subsampling technique (e.g. [1, 2,
4]). In summary, these algorithms function by randomly sampling the variables according to
some distribution and performing an exhaustive search on the induced instance. Since the sampled
set of variables is not too large, the running time is not exponential. However, none of these
algorithm achieves polynomial running time for large alphabets. In particular, all of them are
stuck at quasi-polynomial running time.

Since none of these algorithms runs in polynomial time for large alphabet, a natural and intriguing
question is how good a polynomial-time approximation algorithm can be for dense Max 2-CSPs.
In this paper, we partially answer this question by providing a polynomial-time approximation
algorithm for dense high-value Max 2-CSPs that achieves O((nq)) approximation ratio for any

constant . Moreover, our technique also helps us come up with a quasi-polynomial time
approximation scheme for satisfiable Max 2-CSPs with running time asymptotically better than
that those from [1, 2, 3, 4].

The central idea of our technique is a trade-off between two different approaches: greedy
assignment algorithm and “choice reduction” algorithm. In summary, either a simple greedy
algorithm produces an assignment that satisfies many constraints or, by assigning an assignment
to just one variable, we can reduce the number of optimal assignment candidates of other variables
significantly. The latter is what we call the choice reduction algorithm. By applying this argument
repeatedly, either one of the greedy assignments gives a high-value assignment, or we are left
with only few candidate labels for each variable. In the latter case, we can then just pick a greedy
assignment at the end.

Not only that our technique is useful for Max 2-CSP, we are able to obtain approximation algorithms
for other problems in dense settings as well. The first such problem is free games, which can be
defined simply as Max 2-CSP on balanced complete bipartite graphs. While free games have been
studied extensively in the context of parallel repetition [5, 17] and as basis for complexity and
hardness results [1, 9], the algorithm aspect of it has not been researched as much. In fact,
apart from the aforementioned algorithms for dense Max 2-CSP that also works for free games,
we are aware of only two approximation algorithms, by Aaronson et al. [1] and by Brandao and
Harrow [8], specifically developed for free games. Similar to the subsampling lemmas, these two
algorithms are PTASs when q is constant but, when q is large, the running times become quasi-
polynomial. Interestingly, our result for dense Max 2-CSP directly yields a polynomial-time
algorithm that can approximate free games within  factor for any constant , which
may be the first non-trivial approximation algorithm for free games with such running time.

Secondly, our idea is also applicable for projection games. The projection games problem (also
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known as Label Cover) is Max 2-CSP on a bipartite graph where, for each assignment to a left
vertex of an edge, there is exactly one satisfiable assignment to the other endpoint of the edge.
Label Cover is of great significance in the field of hardness of approximation since almost all NP-
hardness of approximation results known today are reduced from the NP-hardness of approximation
of projection games (e.g. [6, 12]).

The current best polynomial-time approximation algorithm for satisfiable projection games is the
authors’ with O((nq)1/4) ratio [14]. Moreover, as mentioned earlier, if the PGC is true, then, in
polynomial time, approximating Label Cover beyond some polynomial ratio is unlikely. In this
paper, we exceed this bound on random balanced bipartite graphs with sufficiently high density by
proving that, in polynomial time, one can approximate satisfiable projection games on such graphs

to within  factor for any constant .

Finally, we show a similar result for Densest k-Subgraph, the problem of finding a size-k subgraph
of a given graph that contains as many edges as possible. Finding best polynomialtime approximation
algorithm for Densest k-Subgraph(DkS) is an open question in the field of approximation algorithms.
Currently, the best known algorithm for DkS achieves an approximation ratio of  for any

constant  [7]. On the other hand, however, we only know that there is no PTAS for DkS
unless P = NP [13].

Even though Densest k-Subgraph on general graphs remains open, the problem is better understood
in some dense settings. More specifically, Arora et al. [3] provided a PTAS for the problem when
the given graph is dense and  where N is the number of vertices of the given graph. Later,
Feige et al. [11] and Suzuki and Tokuyama [18] showed that, if we only know that the optimal
solution is sufficiently dense, we can still approximate the solution to within any polynomial ratio
in polynomial time. Using our approximation algorithm for dense Max 2-CSP, we are able to construct
a polynomial-time algorithm for Densest k-Subgraph with similar conditions and guarantees as
those of the algorithms from [11] and [18].

The theorems we prove in this paper are stated in Section 3 after appropriate preliminaries in the
next section.

2. Preliminaries and Notation

In this section, we formally define the problems we focus on and the notation we use throughout
the paper. First, to avoid confusion, let us state the definition of approximation ratio for the
purpose of this paper.

Definition 1. An approximation algorithm for a maximization problem is said to have an
approximation ratio  if the output of the algorithm is at least 1/ times the optimal solution.

Note here that the approximation ratio as defined above is always at least one. Next, before we
define our problems, we review the standard notation of density of a graph.

Definition 2. A simple undirected graph G = (V,E) is defined to be of density |E|/|V |2.

Moreover, for a graph G and a vertex u, we use  to denote the set of neighbors of u in G. We

also define  to denote the set of neighbors of neighbors of u in G, i.e., . When it

is unambiguous, we will leave out G and simply write (u) or 2(u).

Now, we will define the problems starting with Max 2-CSP.

Definition 3. An instance  of Max 2-CSP consists of

 a simple undirected graph (V, E), and
 for each edge , a constraint (or constraint)  where [q] denotes .
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The goal is to find an assignment (solution)  that maximizes the number of constraints

Ce’s that are satisfied, i.e. . In other words, find an assignment  

that maximizes . The value of an assignment is defined as the fraction of

edges satisfied by it and the value of an instance is defined as the value of the optimal assignment.

A Max 2-CSP instance  is called -dense if the graph (V, E) is -dense. Throughout
the paper, we use n to denote the number of vertices (variables) |V| and N to denote nq, which
can be viewed as the size of the problem.

Free games and projection games are specific classes of Max 2-CSP, which can be defined as
follows. Note that n, N, density and value are defined in a similar fashion for free games and
projection games as well.

Definition 4. A free game  consists of

 Two sets A,B of equal size, and

 for (a, b)  A × B, a constraint .

The goal is to find an assignment   that maximizes the number of edges (a, b) 

A × B that are satisfied, i.e., .

Definition 5. A projection game  consists of

 a simple bipartite graph (A, B ,E), and

 for each edge  a “projection” 

The goal is to find an assignment to the vertices  that maximizes the number of

edges e = (a, b) that are satisfied, i.e., .

Both free games and projection games can be viewed as special cases of Max 2-CSP. More
specifically, free games are simply Max 2-CSPs on complete balanced bipartite graphs.

For projection games, one can view ’e as a constraint  where  if and only if

. In other words, projection game is Max 2-CSP on bipartite graph where an
assignment to the endpoint in A of an edge determines the assignment to the endpoint in B.

For convenience, we will define the notation of “optimal assignment” for Max 2-CSP intuitively
as follows.

Definition 6. For a Max 2-CSP instance , for each vertex , let   be the
assignment to u in an assignment to vertices that satisfies maximum number of edges, i.e.,

 is the assignment that maximizes . In short, we will sometimes

refer to this as “the optimal assignment”.

Note that since projection games and free games are families of Max 2-CSP, the above definition
also carries over when we discuss them.

Lastly, we define Densest k-Subgraph.

Definition 7. In the Densest k-Subgraph problem, the input is a simple graph G = (V, E) of N =
|V| vertices. The goal is to find a subgraph of size k that contain maximum number of edges.
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3. Summary of Results

We are finally ready to describe our results and how they relate to the previous results. We will
start with the main theorem on approximating high-value dense Max 2-CSP.

 Theorem 8. (Main Theorem). For every constant  , there exists a polynomial-time algorithm that, given a -
dense Max 2-CSP instance of value , produces an assignment of value  for the instance.

Note that, when , by choosing , the algorithm can achieve  approximation

ratio for any constant .

Since every free game is 1/2-dense, Theorem 8 immediately implies the following corollary.

 Corollary 9. For every constant , there exists a polynomial-time algorithm that, given a

free game of value , produces an assignment of value  for the instance.

Again, note that when , the algorithm can achieve  approximation ratio for any

constant .

The next result is a similar algorithm for projection games on sufficiently dense random graphs
as stated below.

 Theorem 10. For every constant , there exists a polynomial-time algorithm that, given a satisfiable projection

game on a random bipartite graph (A,B,E) ~ (n/2, n/2, p) for any , produces an assignment of value
 for the instance with probability 1 - o(1).

Note that (n/2, n/2, p) is defined in Erdos-Rényi fashion, i.e., the graph contains n/2 vertices
on each side and, each pair of left and right vertices is included as an edge with probability p
independently.

In addition, it is worth noting here that the required density for projection games is much lower

than that of Max 2-CSP; our Max 2-CSP algorithm requires the degree to be  whereas

the projection games algorithm requires only .

As stated earlier, we are unaware of any non-trivial polynomial-time algorithm for dense Max 2-
CSP, free games, or projection games on dense random graphs prior to our algorithm. Next, we
state our analogous result for Densest k-Subgraph.

 Corollary 11. For every constant , there exists a polynomial-time algorithm that, given
a graph G = (V, E) on N vertices such that its densest subgraph with k vertices is -dense,

produces a subgraph of k vertices that is  -dense with high probability.

Note that the density condition is on the optimal solution, not the given graph G. The condition
and the algorithm are exactly the same as that of [11] and [18]. However, the techniques are
substantially different. While [11] deals combinatorially directly with the given graph G and [18]
employs subsampling technique, we simply use our algorithm from Theorem 8 together with a
simple reduction from Densest k-Subgraph to Max 2-CSP due to Charikar et al. [10].

Lastly, we also give a quasi-polynomial time approximation scheme for satisfiable dense Max 2-
CSP as described formally below.

 Corollary 12 (QPTAS for Dense Max 2-CSP). For any , there exists an -

approximation algorithm for satisfiable -dense Max 2-CSP that runs in time .

Comparing to the known algorithms, our QPTAS runs faster than QPTASs from [2, 3, 4], each of
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which takes at least  time. However, while our algorithm works only for satisfiable
instances, the mentioned algorithms work for unsatisfiable instances as well but with an additive
error of  in value instead of the usual multiplicative guarantee of (1 + ).

4. Proof of the Main Theorem

In this section, we prove the main theorem. In order to do so, we will first show that we do not
have to worry about the density  at all, i.e., it is enough for us to prove the following lemma.

 Lemma 13. For every , there exists a polynomial-time algorithm that, given a free game

(q,  of value , produces an assignment of value  for the instance.

The proof of the main theorem based on the lemma above is shown below.

Proof of Theorem 8 based on Lemma 13. The proof is based on putting in “dummy edges”
where the constraints are always false regardless of the assignment to make the game more
dense. More specifically, given a Max 2-CSP instance  of value  and density , we

construct a free game  as follows:

Let A, B be copies of V and let .

For each  and , let  if . Otherwise, .

It is not hard to see that, if we assign the optimal assignment of the original instance to the free
game, then  edges are satisfied where n = |V|. In other words, the value of the free game is

at least . Thus, from Lemma 13, for any constant , we can find an assignment 

of value at least  for the free game.

We create an assignment  based on  as follows. For each vertex , let  and

 be the vertices corresponding to v in the free game. Set  to be either  with
equal probability.

From the above construction, the expected number of edges satisfied by  in the Max 2-CSP
instance is

Observe that
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is the value of ‘  with respect to the free game, which is at least . As a result, we

can conclude that ‘ is of expected value at least  with respect to

the instance .

Lastly, we note that while the algorithm above is non-deterministic, the standard derandomization
technique via conditional probability can be employed to make the algorithm deterministic without
affecting the guarantee on the value of , which completes our proof for the main theorem.

Now, we finally give the proof for Lemma 13. As mentioned in the introduction, the main idea of
the proof is a trade-off between the greedy algorithm and the choice reduction algorithm. In
other words, either the greedy assignment has high value, or we can reduce the number of
candidates of the optimal assignment for many variables significantly by assigning only one
variable. This argument needs to be applied multiple times to arrive at the result; the more
variables we iterate on, the better guarantee we get on the output assignment value.

For the purpose of analysis, we will define our algorithm recursively and use induction to show
that the output assignment meets the desired criteria.

Proof of Lemma 13. First, let us define notation that we will use throughout the proof. For a

free game , define EOPT to be the set of edges satisfied by  . In

other words, . We also define  to be the neighborhood

of u with respect to (V,EOPT) and let  be the degree of u in , i.e., . In

addition, let  be the size of A and B.

We will prove the lemma by induction. Let P(i) represent the following statement: there exists
an -time algorithm Approx-FreeGame  that takes in a

free game instance  of value  and a reduced alphabet set Sb for every
, and produces an assignment that satisfies at least

edges. Note here that  denotes an indicator variable for whether . Moreover,

for convenience, we use the expression  to be represent zero when ;.

Before we proceed to the induction, let us note why P(i) implies the lemma. By setting 

and  for every , since  for every b  B, the number of edges satisfied by the
output assignment of the algorithm in P(i) is at least

 (Since  is the value of the instance) = 
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(From our choice of i) 

which is the statement of the lemma.

Now, we finally show that P(i) is true for every  by induction.

Base Case. The algorithm Approx-FreeGame  is a greedy
algorithm that works as follows:

1. For each a  A, assign  that maximizes  to it.

2. For each b  B, assign  that maximizes the number of edges satisfied, i.e., ,

to it.

It is obvious that the algorithm runs in  time as desired.

Next, we need to show that the algorithm gives an assignment that satisfies at least edges.

To prove this, observe that, from our choice of b , the number of satisfied edges by the output
assignment can be bounded as follows.

Thus, we can conclude that P(1) is true.

Inductive Step. Let j be any positive integer. Suppose that P(j) holds.

We will now describe Approx-FreeGamej+1 based on Approx-FreeGamej as follows.
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Now, observe that, for every , we have . This is because,

from our definition of  for every , which means that, if  is in

Sb, then it remains in . Thus, the above inequality can be written as follows:

1. For each  and , do the following:

a. For each , compute .

b. Call Approx-FreeGame . Let the output assignment be

.

2. Execute the following greedy algorithm:

a. For each , assign  to it that maximizes .

b. For each , assign  to it that maximizes the number of edges satisfied, i.e., maximizes

.

3. Output an assignment among the greedy assignment and  for every  that satisfies
maximum number of edges.

Since every step except the Approx-FreeGame  calls takes

O((nq)2) time and we call APPROX-FREEGAMEJ only at most (nq)2 times, we can conclude that the
running time of APPROX-FREEGAME  as desired.

Define R to be , our target number of edges we want to

satisfy. The only thing left to show is that the assignment output from the algorithm indeed
satisfies at least R edges. We will consider two cases.

First, if there exist  such that the output assignment from Approx-

 satisfies at least R edges, then it is obvious that the

output assignment of APPROX-FREEGAMEJ+1 indeed satisfies at least R edges as well.

In the second case, for every , the output assignment from Approx-

 satisfies less than R edges. For each , since the

output assignment from Approx-FreeGame  satisfies less than R edges,
we arrive at the following inequality:

We will use inequality (1) later in the proof. For now, we will turn our attention to the number of
edges satisfied by the greedy algorithm, which, from our choice of b , can be bounded as follows:
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Moreover, from inequality (1), we can derive the following inequalities:

By applying Hölder’s inequality once again, the last term above is at least

Hence, we can conclude that
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In other words, our greedy algorithm satisfies at least R edges, which means that P(j + 1) is also
true for this second case.

As a result, P(i) is true for every positive integer i, which completes the proof for Lemma 13.

5. Approximation Algorithm for Projection Games

In this section, we will present our approximation algorithm for projection games. The main idea
of this algorithm is a reduction from projection games on dense random graphs to free games,
which we use together with the approximation algorithm for free games from Corollary 9 above
to prove Theorem 10. The reduction’s properties can be stated formally as follows.

 Lemma 14. There is a polynomial-time reduction from a satisfiable projection game (q, A,B,E,

 where (A, B, E) is sampled from a distribution  where  to a

satisfiable free game instance  such that, with probability 1 - o(1),

1. |A’|, |B’| |A| and q’  q, and

2. For any , given an assignment  to the free game instance of value ,
one can construct an assignment  for the projection game of value () in polynomial
time.

Before we describe the reduction, we give a straightforward proof for Theorem 10 based on the
above lemma.

Proof of Theorem 10 based on Lemma 14. The proof is simple. First, we use the reduction
from Lemma 14 to transform a projection game on dense graph to a free game. Since the
approximation ratio deteriorates by only constant factor with probability 1 - o(1) in the reduction,

we can use the approximation algorithm from Corollary 9 with  = 1, which gives us an assignment
of value at least .

To prove the reduction lemma, we use the following two properties of random graphs. We do not
prove the lemmas as they follow from a standard Chernoff bound.

 Lemma 15. When , with probability 1 - o(1), every vertex in  has degree
between np/10 and 10np.

 Lemma 16. In  with , with probability 1 - o(1), every pair of vertices

a, a’ on the left has at least np2/10 common neighbors.

Now, we are ready to prove the reduction lemma. Roughly speaking, the idea of the proof is to
“square” the projection game, i.e., use A as the vertices of the new game and, for each pair of
vertices in A, add a constriant between them based on their constraints with their common
neighbors in the projection game. This can be formalized as follows.

Proof of Lemma 14. The reduction proceeds as follows.

1. Partition A into A1,A1 of equal sizes. Then, set  and .

2. For each  to be one if and only if these two assignments
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agree on every . In other words,  if and only i f

 for every .

It is obvious that the reduction runs in polynomial time, the first condition holds, and the new
game is satisfiable. Thus, we only need to prove that, with probability 1 - o(1), the second
condition is indeed true.

To show this, we present a simple algorithm that, given an assignment  of the

free game instance of value , output an assignment  of the projection game of
value . The algorithm works greedily as follows.

1. For each a  A, let .

2. For each b  B, pick  to be the assignment to b that satisfies maximum number of

edges, i.e., maximize .

Trivially, the algorithm runs in polynomial time. Thus, we only need to prove that, with probability
1"o(1), the produced assignment is of value at least  . To prove this, we will use the properties
from Lemma 15 and  Lemma 16, which holds with probability 1 - o(1).The number of satisfied
edges can be written as follows.

Let du be the degree of u in (A,B,E) for every , i.e. . We can further rearrange
the above expression as follows.
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Now, observe that, from its definition, if  is one, then  is also one for
every . Thus, we have

From Lemma 16, with probability  for every . Hence, we
can conclude that the above expression is, with probability 1 - o(1), at least

Observe that . Thus,

the number of satisfied edges is at least

Moreover, from Lemma 15,  for every  with probability . This implies that,
with probability 1 - o(1), the output assignment satisfied at least edges.

edges.

We can further reorganize this quantity as follows.
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Next, note that  is the number of edges satisfied by  in the free

game, which is at least . Thus, we have

Finally, again from Lemma 15, the total number of edges is at most 5n2p with probability 1 - o(1).
As a result, with probability 1 - o(1), the algorithm outputs an assignment that satisfies at least

 fraction of edges of the projection game instance as desired.

6. Approximation Algorithm for Densest k-Subgraph

The main goal of this section is to prove Corollary 11. As stated previously, we simply use our
algorithm from Theorem 8 together with a reduction from Max 2-CSP to DkS from [10]. First, let
us start by stating the reduction from Theorem 8, which we rephrase as follows.

 Lemma 17 ([10]). There exists a randomized polynomial-time algorithm that, given a graph G

of N vertices and an integer , produces an instance  of Max 2-CSP such

that

q  N, n = k, and

Any solution to the instance can be translated in polynomial time to a subgraph of G of k vertices
such that the number of edges in the subgraph equals to the number of edges satisfied by the
Max 2-CSP solution, and

with constant probability, the number of edges satisfied by the optimal solution to the instance is
at least 1/100 times the number of edges in the densest k-subgraph of G.

We will not show the proof of Lemma 17 here; please refer to Theorem 6 from [10] for the proof.
Instead, we will now show how to use the reduction to arrive at the proof of Corollary 11.

Proof of Corollary 11. First, we note that, to prove Corollary 11, it is enough to find a randomized
polynomial-time algorithm with similar approximation guarantee to that in Corollary 11 except
that the probability of success is a constant (instead of high probability as stated in Corollary 11).
This is because we can then repeatedly run this algorithm  (log n) times and produce the
desired result.

The algorithm proceeds as follows:

1. Use the reduction from Lemma 17 on the input graph G and k to produce .

2. Run the algorithm from Theorem 8 on .

 3. Transform the assignment from previous step according to Lemma 17 and output the result.

From the property of the reduction, we know that, with constant probability, the optimal assignment
to (  satisfies  edges. If this is the case, we can conclude that the density of

(V,E) is  and, similarly, that the value of the instance is . As a result, the output assignment
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from step 2 has value at least . Since the reduction from Lemma 17 preserves the
optimum, our algorithm produces a subgraph of density at least  as well, which
concludes our proof for this corollary.

7. QPTAS for Dense Max 2-CSPs

At first glance, it seems that the QPTAS would follow easily for our main theorem. This, however,
is not the case as the algorithm in the main theorem always loses at least a constant factor.
Instead, we need to give an algorithm that is similar to that of the main theorem but have a
stronger guarantee in approximation ratio for satisfiable instances, which can be stated as follows.

 Lemma 18. For every positive integer i > 0, there exists an -time algorithm that, for
any satisfiable Max 2-CSP instance on the complete graph, produces an assignment of value at
least .

Lemma 18 can be viewed as a special case of the main theorem when the graph is complete.
However, it should be noted that Lemma 18 is more exact in the sense that the guaranteed
lower bound of the value of the output assignment is not asymptotic. The proof of this lemma is
also similar to that of Lemma 13 except that we need slightly more complicated algorithm and
computation to deal with the fact that the underlying graph is not bipartite.

Proof of Lemma 18. We will prove the lemma by induction. Note that throughout the proof, we
will not worry about the randomness that the algorithm employs; it is not hard to see that the
random assignment algorithms described below can be derandomized via greedy approach so
that the approximation guarantees are as good as the expected guarantees of the randomized
ones and that we still end up with the same asymptotic running time.

Let P(i) represent the following statement: there exists an -time algorithm Approx-

CompleteGame  that takes in a satisfiable Max 2- CSP instance 
where (V, E) is a complete graph and a reduced alphabet set Su for every  such that, if

 for every u  V, then the algorithm outputs an assignment of value at least .

Observe that P(i) implies the lemma by simply setting  for every  .

Base Case. The algorithm Approx-CompleteGame  is a simple random
assignment algorithm. However, before we randomly pick the assignment, we need to first discard
the alphabets that we know for sure are not optimal. More specifically, APPROX-
COMPLETEGAME  works as follows.

1. While there exist  and  such that  for every , remove u

from Su.

2. For each , pick  independently and uniformly at random from Su. Output .

It is obvious that the algorithm runs in O(n3q3) time as desired.

Now, we will show that, if  for every , then the algorithm gives an assignment

that is of value at least  in expectation.

First, observe that remains in Su after step 1 for every . This is because

 for every .
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Next, Consider the expected number of satisfied edges by the output assignment, which can be
rearranged as follows:

From the condition of the loop in step 1, we know that after the loop ends, for each , there

must be at least one  such that . In other words,

Similarly, we can also conclude that

Thus, we have

for every uv

 Hence, we can bound the expected number of satisfied edges as follows:

(A.M. - G.M. inequality)

(Each  appears in exactly n - 1 edges) = 
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which implies that P(1) is true as desired.

Inductive Step. Let j be any positive integer. Suppose that P(j) holds.

We will now describe APPROX-COMPLETEGAMEj+1 based on APPROX-COMPLETEGAMEj as fol-
lows.

1. Define R to be   , our target value we want to achieve.

2. Run the following steps 2(a)i to 2(a)iv until no Su is modified by neither step 2(a)iv nor
step 2(a)ii.

a. For each  and , do the following:

i. For each , compute . This is the set of reduced assign-

ments of v if we assign  to u. Note that when .

ii. If  for some  , then remove  from Su and continue to the next u, Ãu pair.

iii. Compute   if , continue to the next  pair.

iv. Execute Approx-CompleteGame . If the output assignment is of

value less than , then remove  from Su. Otherwise, return the output assignment as the
output to Approx-CompleteGamej+1.

3. If the loop in the previous step ends without outputting any assignment, just output a
random assignment (i.e. pick  independently and uniformly at random from Su).

Observe first that the loop can run at most nq times as the total number of elements of Sv’s for
all  is at most nq. This means that we call APPROX-COMPLETEGAMEj at most nq times.
Since every step except the APPROX-COMPLETEGAMEj+1 calls takes  time and we call

Approx-COMPLETEGAMEJ only at most  times, we can conclude that the running time of

APPROX-COMPLETEGAME  as desired.

The only thing left to show is that the assignment output from the algorithm indeed is of
expected value at least R. To do so, we will consider two cases.

First, if step 3 is never reached, the algorithm must terminate at step 2(a)iv. From the return

condition in step 2(a)iv, we know that the output assignment is of value at least  as
desired.

In the second case where step 3 is reached, we first observe that when we remove su from Su

in step 2(a)iv, the instance is still satisfiable. The reason is that, if  is the optimal

assignment for u, then  remains in  for every . Hence, from our inductive hypoth-

esis, the output assignment from Approx-CompleteGame  must be of

value at least . As a result, we never remove  from Su, and, thus, the instance

remains satisfiable throughout the algorithm.
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Moreover, notice that, if  for any , we either remove  from Su or output the

desired assignment. This means that, when step 3 is reached,  for every  and

.

Now, let us consider the expected number of edges satisfied by the random assignment. Since
our graph (V, E) is complete, it can be written as follows.
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Since  is the number of edges in (V, E), we can conclude that the random assignment is

indeed of expected value at least R.

Thus, we can conclude that P(j + 1) is true. As a result, P(i) is true for every positive integer i,
which completes the proof for Lemma 18.

Next, we will prove Corollary 12 by reducing it to Max 2-CSP on complete graph, and, then plug
in Lemma 18 with appropriate i to get the result.

First, observe that, since  for every , by plugging in  for large
enough constant C into Lemma 18, we immediately arrive the following corollary.

 Corollary 19. For any , there exists an -approximation algorithm for satisfiable

Max 2-CSP on the complete graph that runs in time .

Now, we will proceed to show the reduction and, thus, prove Corollary 12.

Proof of Corollary 12. First of all, notice that, since . It is enough for us to show

that there exists an -time algorithm for satisfiable -dense Max 2-CSP that produces
an assignment of value at least .

On input , the algorithm works as follows:

1. Construct a Max 2-CSP instance  where  is a complete graph and  is

defined as Ce if . Otherwise, Ce = 1. In other words, we put in dummy constraints that are
always true just to make the graph complete.

2. Run the algorithm from Corollary 19 on  with  and output the assignment
got from the algorithm.

To see that the algorithm indeed produces an assignment with value  for the input instance,

first observe that, since  is satisfiable,  is trivially satisfiable. Thus,

from Corollary 19, the output assignment has value at least  with respect to

. In other words, the assignment does not satisfy at most  edges. Thus,

with respect to the input instance, it satisfies at least  edges. In other
words, it is of value at least  as desired.

Lastly, note that the running time of this algorithm is determined by that of the algorithm from
Corollary 19, which runs in  time as desired.

8. Conclusions and Open Questions

Finally, we conclude by listing the open questions and interesting directions related to the
techniques and problems presented here. We also provide our thoughts regarding each question.
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Can our algorithm be extended to work for Max k-CSP for k  3? Other algorithms for
approximating Max 2-CSP such as those from [2, 3, 4] are applicable for Max k-CSP for any value
of k as well. So it is possible that our technique can be employed for Max k-CSP too.

Can one also come up with an algorithm that approximates Max 2-CSP to within  factor for

any  > 0 for low-value dense Max 2-CSP? Our algorithm needs the value  to be  in order
to give such a ratio so it is interesting whether we can remove or relax this condition. However,
we do not think that one can remove the condition completely because, with similar technique
to the proof of Corollary 12, we can arrive at a reduction from any Max 2-CSP to dense Max 2-
CSP where the approximation ratio is preserved but the value decreases. This means that, if we
can remove the condition on, then we are also able to refute the PGC. This argument nonetheless
does not rule out relaxing the condition for  without removing it completely.

Can our QPTAS be extended to unsatisfiable instances? One of the main disadvantages of our
QPTAS is that it requires the instance to be satisfiable. This renders our QPTAS useless against
many problems such as Max 2-SAT and Max-Cut because the satisfiable instances of those
problems are trivial. If we can extend our QPTAS to work on unsatisfiable instances as well,
then we may be able to produce interesting results for those problems. Note, however, that,
with similar argument to the preceding question, QPTAS for low-value instances likely does not
exist. Instead, the case of unsatisfiable instances where [2, 3, 4] are successful is when they
look for an additive error guarantee instead of a multiplicative one. Currently, it is unclear
whether our technique can achieve such results.

Can one arrive at a similar or even better algorithm using SDP hierarchies? SDP hierarchies
have been very useful in finding approximation algorithms for combinatorial optimization problems.
A natural question to ask is whether one can apply SDP hierarchies to get similar results to
ours. For example, can the O (i)-level of the Lasserre hierarchy produce an approximation algorithm
with  ratio O(q1/i) for dense Max 2-CSP? If so, then this may also be an interesting direction to
pursue an algorithm with guarantee additive error discussed previously.
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