
Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013 1

Network on Chip Scheduling Modified i-SLIP Scheduler for High-Speed Virtual Output
Queuing Packets

Ihsen BEN MBAREK1, Dhia BELHAJALI1, Mohamed MAZOUZI1, Salem HASNAOUI1, Khaled JALASSI2

1Networking and Distributed Computing: Sys’Com
2Electrical Systems Laboratory of Tunis
1, 2National Engineering School of Tunis
University of Tunis El Manar, Tunis, Tunisia
ben_mbarek_ihsen@yahoo.fr

ABSTRACT: This paper presents a design and an implementation of a hardware scheduler in VHDL for High-Speed VoQ
using a modified i-SLIP algorithm. The aims for the scheduling algorithm is to match input queues with output queues to
achieve the maximum throughput while maintaining stability and eliminating starvation. The N-input by N-output scheduler
manages VoQ packets to avoid a HOL blocking. This implementation requires N Grant Arbiters, N Accept Arbiters, three
input-to-output Swizzles and a FSM. The Modified i-SLIP arbiter requires perforce a state pointer for the highest priority
input (or output). The simulation and synthesis results are shown for N = 8. The design was implemented in VHDL RTL,
simulated with Modelsim 6.2 and synthesized using Xilinx-ISE and the Virtex-4 device XC4VFX100-12FFG1517 of 90 nm
technology to achieve a maximum frequency of 265.88 MHz, a minimum slices utilization of 771 and a total estimated power
consumption about 915 mW.

Keywords: i-SLIP, Scheduler, VHDL, VoQ, HOL blocking, Virtex-4, Xilinx-ISE

Received: 11 November 2012, Revised 25 December 2012, Accepted 30 December 2012

© 2013 DLINE. All rights reserved

1. Introduction

Technology advancement permits the implementation of large VLSI systems on a single silicon chip. Thus, Network-on-chip
(NoC) is the ideal paradigm for communications in core-based system design. NoC seems as a “public transportation”. NoC
represents a shared resource between components such as processor cores, memories and IP blocks. By analogy to multitasking,
NoC and packets are analog to shared processor and tasks, respectively. Therefore, we need a NoC manager called scheduler.
In fact, it is the responsible that decides which packets should be transferred within the NoC from input ports to output ports in
a given time slot. As we are talking about VLSI systems, there is no doubt that a hardware solution must be the best. That is why
we decided to design a hardware scheduler as a real-time solution. On the one hand, there is many scheduling algorithm which
can be hardware implemented such as Parallel Iterative Matching (PIM), Round Robin Matching (RRM), Serial Line Internet
Protocol (SLIP), iterative Serial Line Internet Protocol (i-SLIP). On the other hand, many ways of packets processing to enhance
their management such as Output Buffer, FIFO Input Buffer and Virtual output Queuing (VoQ).

In our case, we settled on Modified i-SLIP algorithm for VoQ packets.

1.1 Scheduling Algorithms
There are various scheduling algorithms where the most employed in manufactory are PIM, RRM, SLIP and i-SLIP.

 2 Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013

1.1.1 Parallel Iterative Matching
The iterative scheduling algorithm PIM affects randomly inputs to outputs [1-3]. PIM requires at most N iteration where N
represents the devices number [4]. In most of cases, it manages VoQ packets (see B)) [4, 5]. Each iteration consists of three steps.

The first step is called request. Each unconnected input that has at least a queued cell for an output sends requests to the
required outputs.

In the second step called also grant, a free output that receives at least a request grants to one input randomly.

The last step is called accept. Each input that receives at least a grant, it accepts only one by selecting an output randomly.

On the one hand, PIM can be considered as a starvation free algorithm. Indeed, its iterations number required to converge on
a maximal-sized match is optimized [1]. On the other hand, it is too difficult to implement a hardware PIM arbiter. Also, it leads not
only to unfairness under heavy loads but also to a throughput about 63 % for single iteration [5].

1.1.2 Round Robin Matching
To resolve both of unfairness and complexity problems, the RRM algorithm took place. RRM consists of three steps: request,
grant, accept [1, 6, 7].

• Step 1: Request: Each input sends a request to every output for which it has a queued cell.

• Step 2: Grant: when an output receives requests, it grants to only one input. Using a fixed round-robin schedule, the granted
input is the nearest one to the highest priority element. An output notification is sent to each input to confirm or not the grant.
The grant pointer (g

i
) points to the highest priority element. The latter pointer must be incremented (modulo N) to one position

beyond the granted one.

• Step 3: Accept: when an input gets a grant, it accepts only one output. Starting from the highest priority element, the accepted
one is that who appears next in a fixed round-robin schedule. The highest priority element is pointed by the accept pointer (a

i
)

of the round-robin schedule. The latter pointer must be incremented (modulo N) to one position beyond the accepted one.

Despite the fairness of RRM [8, 9], its synchronized output arbiter leads to a throughput of just 50% [2, 9].

1.1.3 i-SLIP algorithm
i-SLIP is an iterative scheduling algorithm where “i ” is the number of iteration that can reach at most N iteration where N is the
number of Input/output ports. The single iteration 1-SLIP or simply SLIP algorithm [7, 10] is not only the basis of i-SLIP but also
an improvement upon the RRM algorithm. Indeed, the only difference between SLIP and RRM is that the grant pointer is
updated unless the grant is accepted in the third step. Since SLIP tries to fiend input/output pairs in only one iteration, it is very
likely to find unutilized input/output pairs. That is why i-SLIP algorithm uses several iterations to find I/O pairs as many as
possible till it converges where there is no more possible matches [10].

To conclude, i-SLIP algorithm assigns the lowest priority to the most recently made connection. So, it is fair and starvation free
[6, 7]. As their output arbiters are asynchronous thanks to the conditional update of the grant pointer, under heavy load, all
queues with a common output have the same throughput [5].

1.1.4 Modified i-SLIP algorithm
Modified i-SLIP algorithm consists also of three steps [7, 11].

• Step 1: Request: It is the same as the RRM first step where each unconnected input sends a request to every output for which
it has a queued cell.

• Step 2: Grant: when an output receives requests, it grants to only one input. Using a fixed round-robin schedule, the granted
input is the nearest one to the highest priority element. An output notification is sent to each input to confirm or not the grant.
The grant pointer (g

i
) points to the highest priority element. The latter pointer must be incremented (modulo N) to one position

Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013 3

beyond the granted one if and only if the grant is accepted in Step 3 of the first iteration.

• Step 3: Accept: when an input gets a grant, it accepts only one output. Starting from the highest priority element, the accepted
one is that who appears next in a fixed round-robin schedule. The highest priority element is pointed by the accept pointer (a

i
)

of the round-robin schedule. The latter pointer must be incremented (modulo N) to one position beyond the accepted one only
if this input was matched in the first iteration.

The question is “what is the significance of this algorithm?” Indeed, this algorithm not only shuns starvation and HOL
blocking problems, but also reduces burstness and latency [7, 11]. The modified i-SLIP converges in O (log

2
 N) where the i-SLIP

converge in N iteration [7]. Moreover, throughput under Modified i-SLIP scheduling reaches 100% [6, 10, 12].

The figure 1 represents an example of Modified i-SLIP scheduling of 3 × 3 VoQ packets. The number of iteration is fixed for 3.

Figure 1. 3 × 3 VoQ packets scheduled with Modified 3-SLIP
1.2 Queuing mecanisms
Since we can have more than one packet at the same time for the same output, packets queuing became a need. We can
distinguish three queuing types which are output queuing, input queuing and shared buffer [1, 11, 12]. In our case, we choose
the VoQ as an input queuing mechanism since it is the only way to resolve the Head of Line (HoL) blocking [1]. Also, it reduces
the loss probability [11, 12].

2. Scheduler design

The goal is to manage the communication of N hardware devices. Each device can be an input block as well as an output block.
Thus, our design consists of N input arbiter, called accept arbiter, and N output arbiter or also grant arbiter. In addition, we need
to have three input-to-output Swizzles to reorganize request vectors, grant vectors and accept vectors. In order to control the
iteration number and arbiters updating, we utilize a Finite State Machine (FSM).

Both of grant arbiter and accept arbiter have the same architecture.

Our design has a structural architecture. In fact, an arbiter basically consists of a Programmable Priority Encoder (PPE). Moreover,
programmable priority encoder can be made from tow Simple Priority Encoder (SPE) where the corresponding pseudocode is
shown in figure 2.

Component SPE (Request_Vector) (Grant_Accept)
{

for Device_i := 1 to Device_Nmbr do
if (Request_Vector[Device_i] := 1) then

Set_to_Zero_Vector (Grant_Accept)
Grant_Accept [Device_i] =1
Set_to_Zero_Vector (Request_Vector)

else
Grant_Accept = Grant_Accept

end if
end for
Return Grant_Accept

}

Figure 2. Simple Priority Encoder pseudocode

 4 Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013

PPE principal is described within its pseudocode presented in figure 3.

Component PPE (Request_Vector, HightPriority_Device)
 (Grant_Accept , AnyGrant_Accept)
{
 Set_to_Zero_Vector (Grant_Accept)
 for Device_i := HightPriority_Devise to Device_Nmbr do

if (Request_Vector [Device_i] := 1) then
 Grant_Accept [Device_i] = 1

 Set_to_Zero_Vector (Request_Vector)
else

 Grant_Accept = SPE (Request_Vector)
end if
if (Grant_Accept != 0) then

 AnyGrant_Accept = 1
else
 AnyGrant_Accept = 0
end if

 end for
 Return Grant_Accept
}

Figure 3. Programmable Priority Encoder pseudocode

Figure 4 shows the arbiter pseudocode of the Modified i-SLIP.

Component Arbiter (Request_Vector, Arbiter_Enable,
Update_Enable) (Grant_Accept, AnyGrant_Accept)
{
 integer HightPriority_Devise = 1
 if (Arbiter_Enable := 1) then
 Grant_Accept = PPE.Grant_Accept
(HightPriority_Devise,
 Request_Vector)
 AnyGrant_Accept = PPE.AnyGrant_Accept (
 HightPriority_Devise,
Request_Vector)

 if (Update_Enable := 1) then
 for Device_i := 1 to Device_Nmbr do

 if (Grant_Accept [Device_i] := 1) then
 HightPriority_Device = Device_i + 1
 else
 HightPriority_Device = Device_i

 end if
 end for
 else HightPriority_Device = HightPriority_Device

 else
 Set_to_Zero_Vector (Grant_Accept)
 AnyGrant_Accept = 0
 end if
 }

Figure 4. Modified i-SLIP Arbiter pseudocode

Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013 5

3. Scheduler simulation and implementation

In this part, we will present simulation and implementation results of 8 × 8 input/output using Modelsim SE 6.2 full version as
VHDL simulator and Xilinx ISE 8.1i WebPACK version as VHDL synthesizer.

The simulated example is characterized by :

• N = 8; m = 3 (where 2m = N); i = 8;

• packet width = 72bits

• 8 grant arbiters (output side)

• 8 accept arbiters (input side)

• 3 swizzles

Figure 5. Power sammary

Figure 6. Modified i-SLIP scheduler simulation

 6 Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013

Figure 7. 8 × 8 Scheduler RTL Schematic

Figure 8. 8 × 8 Scheduler Clock Report

• 1 finite state machine

• 1 update_enable

Progress in Signals and Telecommunication Engineering Volume 2 Number 1 March 2013 7

3.1 Simulation
The simulation results of our Modified i-SLIP scheduler are illustrated in figure 6.

3.2 Synthesis results
The design was implemented in VHDL RTL, simulated with Modelsim 6.2 and synthesized using Xilinx-ISE and the Virtex-4
device XC4VFX100-12FFG1517 of 90 nm technology to achieve a maximum frequency of 265.88 MHz, a minimum slices utilization
of 771 and a total estimated power consumption about 915 mW.

RTL schematic of the design is presented in Figure 6 and power summery results are described in Figure 5.

4. Conclusion

Modified (i-SLIP) scheduling algorithm has been investigated in order to implement our scheduler in VHDL. In fact, i-SLIP
algorithm is:

• Simple to implement in hardware

• Fair, Starvation free, with throughput about 100%

• An algorithm which reduces the average burst length and Converges in O (logN).

We noticed that the slowest timing path through the scheduler passes through the programmable priority encoder logic of the
grant/accept arbiters. Which means that optimized scheduler should be obtained for optimized arbiter.

References

[1] Young-Keun, P., Young-Keun, L. (2001). Parallel iterative matching-based cell scheduling algorithm for high-performance
ATM switches Consumer Electronics, IEEE Transactions, 47, 134-137.

[2] Lee, T. T., Liew, S. Y. (2002). Parallel Routing Algorithms in Benes–Clos Networks, IEEE Trans. Commun., 50 (11) 1841–1847.

[3] Jonathan Chao, H., Bin Liu. (2007). High Performance Switches and Routers, John Wiley & Sons, 27 avr., p. 232-234.

[4] Pindor, A. (1994). Experiences with implementing PIM (Parallel Iterative Methods) package on KSR1, In: Supercomputing
Symposium’ 94, Toronto, June.

[5] Lee, T. T., Soung, C., Liew. (2010). Principles of Broadband Switching and Networking, John Wiley & Sons, p. 58-63.

[6] Mckeown, N. W. (1995). Scheduling algorithms for input-queued cell switches, doctoral thesis. UMI order no. GAX96-02658,
university of California: Berkeley, p. 20-52.

[7] Pape, J. (2006). Implementation of an On-chip Interconnect Using the i-SLIP Scheduling Algorithm: Intermediate Report –
Specification and Timeline, p. 64-71.

[8] Cavendish, D., Lajolo, M., Liu, H. (2002). On the evaluation of fairness for input queue switches, IEEE International
Conference on Communications. ICC 2002, V. 2.

[9] Varghese, G. (2005). Network Algorithmics: an interdisciplinary approach to designing fast networked devices, Morgan
Kaufmann.

[10] McKeown, N. (1999). The iSLIP scheduling algorithm for input-queued switches, IEEE/ACM Transactions On Networking,
7 (2) 188–201.

[11] Sivaram, R., Stunkel, C. B., Panda, D. K. (2002). HIPIQS: A high-performance switch architecture using input queuing, IEEE
Trans. Parallel Distrib. Syst., 13 (3) 275–289, March.

[12] Cavendish, D., Goudreau, M., Ishii, A. (2001). On the fairness of scheduling algorithms for input-queued switches, In: Proc.
17th Int’l Teletraffic Congress, Brazil, 4, 829–841, December.

