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ABSTRACT

In this work, we aim to develop a computationally efficient algorithm for address-
ing the forward gravity issue related to elliptical objects. This algorithm is de-
signed to support parallel processing, and it has been put into practice and evalu-
ated using CUDA technology. Generally, the proposed approach can be utilized
for density distribution models of any shape that can be trained.
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1. Problem Statement

Modern studies of the internal structure of the Earth require density model
reconstructions with high resolution and accuracy. This raises questions on
error estimation due to spherical shape of the Earth and creates the need of
refinement of the modelling results with sphericity taken into account. Thus,
there is a need for an effective tool that allows solving the forward gravity
problem for spherical and elliptical density models. In this paper, we propose
an algorithm based on the new representations of the triangular plate po-
tential in space that makes it possible to effectively use the capabilities of
modern computational parallelization technologies (in particular, CUDA) and,
as a result, to obtain high-performance gravity eld solving software.

Define the 3D density model as follows. Upper boundary S of the model
(ground-air interface) is a sector of a surface of an ellipsoid of revolution (for
example, Krasovsky Ellipsoid), all points located at a distance of no more
than H along the inner normal to S are forming a set D (see Figure 1). In the

domain , the density distribution (p) is defined, Dp .

The vertical component of  the gravitational eld intensity  g generaded by
the domain D at  the outer point DDq  \  is determined by the integral
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                                                      (1)

Figure 1. Visual representation of the 3D density model

where is the gravitational constant, dVp is a volume element of integration, nq is the outer
normal to S in the orthogonal projection of the point q to S, r and r0 are the radius vectors of the
points p and q, respectively.

Assume the ellipsoid of rotation for our spherical model D has equatorial and polar radii equal
to a and b. The position of the point on the surface of the ellipsoid of rotation is uniquely

defined by the geodesic latitude ]2/;2/[ B and the longitude ];( L (except for the

\poles”, where longitude is not dened). As a third coordinate H we employ the distance between
the given point and the ellipsoid surface; it has a plus sign if the point lies outside the ellipsoid,
and the minus sign if the point lies inside it. Position of the given point in space is uniquely

defined by three values: (L, B, H), where )1( 2eNH  , abae /22  (the eccentricity of the

ellipsoid), and BeaN 22 sin1/  .

2. Gravity Field of a Spherical Model

Assume DI,J,K is a descrete element of D and the density of a descrete element be a constant

kji ,, Then the field g at point q generated by D is equals to

                                                       (2)

where Gi,j,k  (q) is the eld at the point q of Di,j,k up to a coefficient . In order to calculate Gi,j,k(q),
we introduce in the space of a spherical model a rectangular Cartesian coordinate system

zyxO  . The centerO coincides with the centerO z the ellipsoid, O0z0 axis is ellipsoid’s axis

of rotation and directed from the “south pole” to the “north” (i.e. when 2/B , then 0z ),

the O y  axis points to (0,0,0) in (L,B,H), the axis O y complements the system to the right-

handed axis set.
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Equations for transition from (L,B,H) to zyxO  are then as follows:

                                                                                                             (3)

and

                                                                                                             (4)

where n is a unit vector of the external normal to the ellipsoid at the point (L,B,0).

Integral (1) for the Gi,j,k(q) field cannot be expressed analytically. It is also problematic to
calculate in numerically (with the help of the cubature formulas), since the boundaries of Di,j,k

usually have a very complex description in the (L, B, H) or ( zyx  ) coordinate system and, in

order to achieve acceptable accuracy, a large number of nodes is required [1, 6]. Therefore,
we propose to calculate integral (1) not for Di, j, k, but for the polyhedron of approximation Di,j,k
formed by the triangulation of Di,j,k Thereby,

                                                                                                             (5)

In formula (5), we proceed to integration over the surface, using the Ostro-gradsky theorem

Next, we divide the surface integral into parts along the faces of kjiD ,,


and take into account

that the outer normal np at the integration point is constant for each face

                                                                                                             (6)

where ni1 is the outer normal to the face Si1. Now we need to acquire a formula for the integral

 over a triangle (which is the gravitational potential of a triangle with a unit surface

density without  coefficient). Let ri (i = 1,2,3) be the radius vector of the vertices of the triangle

;,, 321 ppp  q is the field computation point; )1,(),1(),(0 ;;   iiiijijiijii aaNrraaarra

is the normal to the plane of the triangle with a length equal to its doubled area; NNn / is

the unit normal to the plane of the triangle; ;/ ),(),(),( ijijkj aaA  (ai.n) is the distance from the

point q to the plane of the triangle (with the appropriate sign). Then

                                                                                                             (7)
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Summarizing the process of calculating the vertical component of the field  g(q) from the
model D, we have:

1. For each element Di,j,k using coordinates transformation (3), obtain the set of faces 

of the approximating polyhedron kjiD ,,


(in the Cartesian system zyxO  );

2. With the help of formulas (6), (7) calculate the vertical component of the field kjiG ,,


(q) for

the polyhedron kjiD ,,


 at the point q, the normal vector n(q) is calculated by formula (4);

3. Assume Gi, j, k(q)  kjiG ,,


(q) and by field summation of each  (2) acquire g (q).

3. Implementation

In the presented algorithm, computation of formula (7) is taking most of the time of the running
program. Indeed, in order to calculate the eld of body that consists of Nb discrete elements in
Nf points of space, the expression should be calculated N = kNbNf times, where k is the amount
of triangles in one element of the body. In practice, N is of order of 1015 for high-resolution
Earth crust models (with surface area of order 10001000km and depth of 100km). With- out
using contemporary parallel technologies such computations would become senseless since it
would take months or even years to run. Hence, our goal is to utilize most powerful
computational devices available, which are GPUs.

Here, we assume that all the preprocessing steps have been done and as our input we have
a set of triangles T (represented by triplets of points in space) that has been obtained as a
result of triangulation of the discrete elements of the body. Additionally, we have a set of
points Q, in which we want to calculate the normal component (or a vector) of gravitational eld
of the body. We are not going into details of this step because its computational complexity
does not depend on Nf; thus, its becoming insignificant for large values of Nf.

The field computation requires minimum two nested cycles through Q and T. The iterations of
the outer loop (over Q) are mutually independent and can be split between different computing
nodes or/and GPUs. The inner loop (over T) can be expressed using map-reduce pattern: gq =
reduce(mapq(T)), where g is the resulting gravitational eld vector the at the point q. The trick is
that those operations are implemented with high efficiency in the CUDA Thrust library [5] in
the form of a single function: thrust::transform reduce(). All we were left to do is to implement
formula (7) and pass it as a parameter.

4. Performance tests

All the tests have been performed using two regional Earth crust models that have been
previously reconstructed in Bulashevich Institute of Geophysics (Ural Branch of Russian Academy
of Sciences) as a result of solving inverse gravity problem [2-4]. Test models characteristics
are shown in Table 1. Krasovsky Ellipsoid is taken as the reference one.

Name

Workload 1         793km×1057km×81km                             256×256×81                                             256×256

Workload 2         1336km×969km×81km                             1336×969×81                                            334×243

Physical size
(length×width×height)

Discretization of the model (with
respect tolength, width, height)

 Discretization of the
field (with respect to

length, width)

Table 1. Test models characteristics
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Comparison of our most resent CPU available (i7-6900K 8 physical cores @3.2GHz) and our
oldest GPU (GeForce GTX TITAN Black) showed that GPU outperforms CPU from 15 to 20 times
even for considerably small workloads (Workload 1). So, future tests were conducted using only
the GPUs.

Figure 2. Performance test results

Figure 2 shows scalability potential of the algorithm. A slight drop of performance after switch-
ing from 2 GPU to 4 and from 4 to 8 is mostly due to the fact that the load has been split
between GPUs evenly, when actualy it needs to be carefully balanced (since our cluster con-
sists of dierent models of GPUs3). The resulting eld for the second workload is shown on
Figure 3.

Figure 3. The resulting field for the second workload
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