Signals and Telecommunication

P
@w Journal _

: V, Print ISSN: 2278 — 6449

N 4 Online ISSN: 2278 — 6457

DLINE JOURNALS STJ 2025: 14 (1)

https://doi.org/10.6025/stj/2025/14/1/17-34

Novel Encoding Model for Asymptotically Greater Compactness

Bernardo Subercaseaux
Carnegie Mellon University
Pittsburgh, PA, USA

Marijn J.H. Heule
Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

A packing k-coloring for a graph G = (V, E) is defined as a function that assigns colors from the set {1, ..., k} to
the vertices in V. This assignment must ensure that any two vertices u and v that share the same color ¢ are
separated by a distance greater than c within the graph G. One of the key challenges in the area of packing
colorings is to ascertain the packing chromatic number of the infinite square grid. Prior research has estab-
lished that this number lies between 13 and 15. Our study enhances the lower limit to 14. Additionally, we
introduce a novel encoding method that offers asymptotically greater compactness compared to those
previously employed.

Keywords: Packing Coloring, SAT Solvers, EnCodings

Received: 4 October 2024, Revised 21 December 2024, Accepted 30 December 2024
Copyright: with Authors
1. Introduction

Automated reasoning techniques have been successfully applied to a wide variety of coloring problems, ranging
from the classical computer assisted proof of the Four Color Theorem [1] establishing that 4 colors are enough to
color any planar graph, to partial progress on the Hadwiger-Nelson problem [16] of computing the chromatic
number of the graph with vertex set R? and edges between points at euclidean distance exactly 1, and computing
Ramsey-like numbers [12] that characterize the minimum size required for a graph to guarantee that all its
colorings will contain certain local structures. In this context, this article’s main focus is the use of automated
reasoning techniques for improving the best known bounds on the packing chromatic number of the infinite

17 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

square grid. The notion of packing coloring was introduced in the seminal work of Goddard et al. [8]', and has
been extensively studied since [3]. Let us now jump to its definition.

1. Definition Given a graph G = (V, E), a packing k-coloring is a mapping : v : V. — {1, ..., k} such that for
any pair of distinct nodes u, v € Vand any color ¢ € {1, .. ., k} it holds that ¢(u) = ¢(v) = ¢ = dist(u, v) > c.

Year Citation Lower Upper

bound bound
2002 | Goddard et al. [8] 9 23
2002 Schwenk [13] 9 22
2009 | Fialaetal. [7] 10 23
2010 |Soukal and Holub [17] 10 17
2010 Ekstein et al. [5] 12 17
2015 Martin et al. [10] 13 16
2017 Martin et al. [11] 13 15
2022 Our work 14 15

Table 1. Historical summary of the bounds known for XP(Z2)

Note that the standard notion of coloring can be stated as requiring ¢(u) = ¢(v) = ¢ = dist(u, v) > 1, which shows
that packing colorings are a natural generalization. Moreover, the notion of chromatic number can be analogously
defined for packing colorings as follows.

2. Definition Given a graph G = (V,E), define its packing chromatic number Xp(G) as the minimum value of
k such that G admits a packing k-coloring.

For any k = 4, the problem of determining whether a graph G admits a packing 4-coloring is known to be NP-
hard [3].

Example 3. Consider the infinite graph with vertex set 7z and with edges between consecutive integers, which
we denote as Z'. A packing 3-coloring is illustrated in Figure 1. On the other hand, by simple examination one
can observe that it is impossible to obtain a packing 2-coloring for z'.

! Tt was originally presented under the name of broadcast coloring, motivated by the problem of choosing broadcast
frequencies for radio stations in a non-conflicting way [8], but the literature has preferred the name packing
coloring since [3].

18 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

2 . 3 .Z -

Figure 1. Illustration for a packing 3-coloring for 7'

Example 3 shows that xp(Zl) = 3. Interestingly, the question of computing xp(7?) , where 77 is the graph with
vertex set Z X zZand edges between orthogonally adjacent points, has been open since the introduction of packing
colorings by Goddard et al. [8]. The first bounds obtained were 9 < XP(Z2) < 23 [8], and before this work, the
best bounds known where 13 < xp(Zz) < 15 by Martin et al. [11]. A summary of the progress until present is
illustrated in Table 1. In what follows, we detail our approach to obtain a lower bound of 14, and present a
theoretically compact encoding as well. For a survey in packing colorings, the reader can refer to that of Bresar
et al. [3].

2. Direct Encoding and Basic Symmetry Breaking

Besides the lower bound of 10 proved by Fiala et al. [7], all other lower bounds have been proved with the help of
computers. Among these, only that of Martin et al. [11] (i.e., the current best bound) was proved with the aid of
SAT solvers. Our work continues along this line.

Proving lower bounds for the packing chromatic number of an infinite graph usually relies on the following
trivial proposition.

Proposition 4 ([8]). Let G be a graph, and H be a sub-graph of G. Then xp(H) < xp(G).

For example, Martin et al. conclude that xp(G) 2 13 by proving that a certain graph H C 72 (which consists on
a 14 X 14 grid, with the number 9 forced in position (7, 12)) does not admit a packing 12-coloring, thus

implying that y, (2°) ZXP(H) > 12,

The direct encoding for determining whether a finite graph H = (V, E) admits a packing k-coloring for some k is
as follows.

1. Create variables x . for each v eV and 1 < i < k, stating that vertex v receives color i.

2. Create a clause x v x v...vXx - 1v x_ , for each vertex veV, implying that every vertex will be assigned
v,1 v,2 v,k v, k
at least some color.

3. For each pair of vertices u, v and color i € {dist(u, v), . .., k}, create a clause X,V X, for bidding that both
u and v get color 1.

Let us now denote by B(v, n) := {u € V (z?)| dist(u, v) < n} the n-radius ball in z2, and recall that |B(v, n)| = 2n?
+2n + 1 = O(n®) for any v. Therefore, to encode whether a given ball B, := B((0, 0), n) admits a packing k-
coloring, the direct encoding requires O(n%k) variables, and its number of clauses is

k

o(n?) + Z [{(u,v) € V(Bn)? | 0 < dist(u,v) < i}

i=1

dline.info/ stj 19

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

k
=0(m*)+Y. > HveV(By)\{u}|dist(u,v) <i}| /2

i=1 ueV(B,)
k
=0(n?) +> n-0(i%) = O(n® + nk®).
=1

Moreover, let B, , represent whether B, admits a packing k-coloring. Then, let D, be the SAT instance created
with the direct encoding for B, and let D* , be equal to D, but forcing its central vertex to be assigned color

min(n, k), choice that we justify later on. Namely, adding the unit clause x Figure 2 illustrates a

(0, 0), min(n,k)*

satisfying assignment for D+ 3, 7.
Proposition 5 Ifxp(7?) 2 min(n, k) for some pair (n, k), and D+, is unsatisfiable, then Xp(Z2) >k+1

Proof If k < n argue as follows. Assume, expecting a contradiction, that 72 admits a packing k-coloring ¢. As Xp(
72) > k, every ¢ must assign at least one vertex v €V (z2) to color k (otherwise ¢ would be a packing (k - 1)-
coloring). Now, note that no other vertex besides v can receive color k in B(v, n), and thus ¢ restricted to B(v,
k) provides a satisfiable assignment for D* , which contradicts the hypothesis. On the other hand, if k > n,
assume a packing k-coloring ¢ and as y, (Z*) = n, there must exist a vertex v € Z* such that ¢(v) = n, Let v be such
that ¢(v) > n is minimized. Then, consider the ball B(v, n) and note that either ¢(v) = n or otherwise ¢(v) > n and
thus {u € B (v, n) | (u) = n} = ¢, by minimality of ¢(v). In either case, ¢ restricted to B(v, n), but assigning color
n to v, provides a satisfiable assignment for D

Figure 2. Illustration of a satisfying assignment for D+,

As we trivially have that if D, . is unsatisfiable then %p (z?) 2 k, one can prove for example that %y (z®) 2 12 by
showing that both D4,7 and D’f%11 are unsatisfiable instances. While this endeavor took Ekstein et al. [5] 120 days
of brute force computation, admittedly with hardware from 2009, a current personal computer is able to prove
the unsatisfiability of D, and D, in less than an hour by using some further optimizations we will present
later. Intuitively, the reason to force min(n, k) in the center is that it is the smallest color we can assign that
guarantees no more occurrences besides the center. As in packing colorings smaller colors have densities (i.e.,
fractions of the vertices receiving said colors) that are greater or equal than those of higher colors [3],

20 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

forcing a color ¢ to appear only once is more useful the smaller c is, as we are reducing from a higher original
density. Note as well that, as opposed to the previous work that used rectangles to provide lower-bounds [5,
11], our basic shape is an [-ball. Let us present an intuitive reason for why this is a good idea. Consider the
following property: a subgraph H — 72 is said to be (n, k)-single, for n < k if there is a vertex v €V (H) such that
assigning color n to v guarantees that in no packing k-coloring of H other vertex u # v can be assigned color n.
Now note that, for any pair (n, k), it happens that Bn is the smallest (n, k)-single graph in terms of its number of
vertices.

In order to quantitatively understand effect of using [-balls instead of squares, as well as the difference between
D+, and D, we study the time required to prove a given lower bound y, (Z*) > k with each of them, under the
same hardware. We will use notation S, to refer to the square grid of nx n, and S, to the direct encoding for S,
with k colors. Moreover, to understand the impact of forcing, let us define S+, to be equal to S , but with an
added unit clause enforcing that the value at the center of the grid, namely at position (.n/2],[n/2]) to contain
value min(k, Ln/2]).

Table 2 presents results comparing the runtime of the different alternatives. It can be appreciated that although
there is not a significant difference between shapes alone, the forcing creates a substantial difference. This can
be interpreted as a rather trivial form of symmetry breaking. Empirically we found that [-balls appeared to
work better with the further optimizations we introduce, and thus we stick with them.

2.1 Experimental Setup

In terms of software, experiments from Table 2 were ran on state-of-the-art solver CaDiCaL [2], while
experiments with cube-and-conquer, as those in Table 3 and Table 4 were ran using iLingeling because it
supports incremental

lower Requires UNSAT of (# vertices) Time
bound
Square Square + 1 -ball l-ball+ |Square |Square+ (l-ball | I -ball+
force force force force
5 S4,4 (16) S+4.4 (16) | D2,4 (13) D+1,4 (5) 0.00s 0.00s 0.00s | 0.00s
6 S5,5 (25) S+5,5(25) | D3,5(25) D+2,5(13)| 0.00s | 0.00s 0.01s | 0.00s
7 S5,6 (25) S+5,6 (25) | D4,6 (41) D+3,6 (25)| 0.04s 0.04s 0.04s | 0.01s
8 56,7 (36) S5+6,7(36) | D4,7 (41) D+4,7 (41)| 0.22s | 0.04s 0.20s | 0.06s
9 S7,8 (49) S+7,8 (49) | Ds5,8 (61) | D+4,8 (41) | 7.00s 0.28s 7.56s | 0.28s
10 59,9 (81) S+8,9 (64) | D6,9 (85) | D+5,9(61) | 147.52s| 11.82s 159.218 12.22s
11 510,10 (100)| S+9,10 (81) | D7,10 (113) | D+5,10 (61)| 2.56hrs | 324.49s | 3.03hrs| 229.76s
12 S12,11 (144) |S+11,11 (121) | D8,11 (145) | D+,11 (85) | >24hrs 4.92hrs | >24hrs| 5.76hrs

Table 2. Comparison of basic approaches for showing lower bounds on %o (z*)using CaDiCaL

dline.info/ stj

21

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

solving [9]. In terms of hardware, all our experiments were run in the Bridges2 cluster of the Pittsburgh
Supercomputing Center [4], which has the following specifications:

Two AMD EPYC 7742 CPUS, each with

® 64 cores

® 2.25-3.40GHz

e 256MB L3

e 8 memory channels

e 512GB of RAM

e NVMe SSD (3.84TB)

e Mellanox ConnectX-6 HDR Infiniband 200Gb/s Adapter.

3. Proving that 14 is a Lower Bound

Given that runtime increases exponentially with respect to the number of colors (see Table 2), to solve instance
D+ , ., within a reasonable amount of time, say 48hrs of computation (including parallelism), we required some

further optimizations.

In particular, we followed the cube-and-conquer approach [9]. In a nutshell, cube-andconquer is based on
constructing a tautological DNF formula & = C, v....v C,_, with cubes C,, . . . ,C,, and then using the following

identity for any formula:

SAT(¢) < SAT(¢Y A ¢) < SAT (\7(1/1 A CZ-)> .

=1

This equivalence means that we can solve instance > by solving a certain numbers of instances of the form ¢ AC,
These instances, if the cubes C, are properly designed, should be much easier to solve than the original instance

1. Moreover, it is clear from its definition that this approach is well-suited for parallel computation.

Let us now describe the construction of cubes that we used, which is also presented as pseudocode in Algorithm
1. Let F and d be fixed integers. Then, our cubes will be based on forcing up to F colors in the ball B((0, 0), d).
More precisely, consider an instance D+ ke and let ¢ = min(n, k) be the color forced at the center. Then, let K = {k,
k-1,..., k- F}\ {c} the set of the F highest colors without considering the one forced at the center. Now, for every
value f €{F, . .., o}, we will create cubes forcing f colors in the following way. For every ordered set O = (o, . . .
s of) consisting of f vertices in B((0, 0), d) \ {(0, 0)}, and every permutation k, . . . , k, of every subset K'c K, |[K2
| = f, create a cube that forces each vertex o, to receive color k, and that asserts as well that colors in K \ K ‘are not
assigned to any vertex in B((0, 0), d).

Example 6 Figure 3 illustrates a cube created for solving the instance D+_, with parameters F = 4 and D = 3.
In particular K = {6, 7, 8, 9}, and the illustrated cube corresponds to f=3, K’ ={6,8, 9} and O = ((-1, 2), (1, 1),
(0,-1)).

Let us prove that this construction forms indeed a tautology, while we also point out that we checked with a SAT-
solver that the generated cubes for the instance we ran form indeed a tautology.

22 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Lemma 7 The construction of cubes presented in Algorithm 1 results in a tautology.

~

~
RN
(I (I]
|

NN NN O
(I I (I I]

NN | O | ol

Figure 3. Illustration of a cube for instance D+ 5,9. The ball B((0, 0), 3) is colored with light gray,and
notation 7 is used to indicate that a given cell is forced to not contain color 7

11 K« {kk—1,...,k—F}\ {min(n,k)}
1.2 cubes < ()
1.3 for f e {F,F—1,...,0} do

1.4 for O C B((0,0),d)\ {(0,0)},|0] = f do
1.5 for K’ € Permutations(K, f) do
> Assume Permutations(K, f) returns a list with all the different f-sized ordered sets
of K.
1.6 cube « ()
1.7 forie{l,...,f} do
1.8 (a,b) < o;
1.9 k+ K
1.10 cube < cube U {z (4 1) 1}
1.11 for t € K\ K’ do
1.12 for v € B((0,0),d) \ O do
1.13 L cube <— cube U {—z, + }
1.14 cubes < cubes U {cube}

Algorithm 1. CubeConstruction(n, k, d, F)

Proof Consider the cube constructed when f takes value (. That cube states that no vertex v € B((0, 0), d)
receives any color in K. If that cube holds, then the DNF is satisfied. Otherwise, some vertices in B((0, 0), d) must
receive colors in K. Let

K*={ke K|3veB((0,0),d),z,, =1},

and note that K* is non empty because the cube associated to value f = 0 does not hold. Then, let O*be an
ordered list of vertices getting different colors in K*. As |K| = F, we have |[K*|< F, and thus O* contains at most
F vertices. These implies that some cube is generated exactly with the values f =|K*|, K'=K* and O = O*, and is
by definition satisfied, thus satisfying the DNF.

dline.info/ stj 23

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

3.1 Symmetry Breaking
To further optimize performance, there is a simple kind of symmetry breaking we can apply.Indeed, note that

the £ -ball presents a natural symmetry with respect to 4 different axis,which will allows to asymptotically reduce
the number of cubes to consider by a factor of 8.

More precisely, it suffices to consider cubes in which the largest number forced appearsin a particular octant,
namely {(i, j) | i =2 0, j 20, i 2 j}. Thus, we can simply optimize Algorithm 1 by considering only cubes whose
largest forced color lies in said octant. This is illustrated in Figure 4. Despite its simplicity, this form of symmetry
breaking had not been used in the past to the best of our knowledge.

3.2 Number of Generated Cubes

The number of cubes generated by Algorithm 1 is an important parameter of our approach; more cubes usually
imply that each cube is easier to solve, up to a certain point at which the sheer number of cubes becomes the
dominant factor in runtime and thus performance decreases. Moreover, this analysis can become even more
complex in the presence of parallel computation.

First, let us analyze the number of cubes asymptotically. Directly from Algorithm 1 it follows that the number of
cubes for a given value of fis exactly

(O) (42 (1)

and thus the total number of cubes is
. /2d% + 2d\ (F
2 (!) (f) e

=0

To obtain a simpler expression we can use the standard bound ({) < (ea/b)’, and note that f = F is the largest

term in the sum, which implies that previous formula is asymptotically bounded above by F(e*(2d?> + 2d)F)<
F(3ed)?" .

d F # cubes| # cubes Time cubes w/o SB Time cubes w/ SB
w.SB| total averag(l max total | average | max
2 2 157 40 126.71s 0.80s | 12.358 36.53s| o0.91s 10.09s
2 3 1753 439 145.86s 0.08s 2.758] 38.43s| o0.08s 2.565
2 4 18001 4501 183.23s 0.01s 0.48s| 45.48s| o.01s 0.338
3 2 601 126 213.108 0.358 1.32s] 45.258(0.33s 1.47s
3 3 13873 2891 400.375 0.02s | 0.39s| 82.90s| o0.02s 0.258
3 4 307009 63961 1204.195 0.00s 0.248| 199.41s 0.00s 0.058

Table 3. Illustration of the effect of the different parameters in the number of cubes, and the derived
runtime, for instance D+_ . Symmetry breaking is abbreviated as SB

24 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

d F # cubes Time w. SB
w.SB

Total Wall clock Avg. cube | Max cube
> 5 40 3280.3s 1995.78 82.4s 1994.65
2 3 439 2845.08 6o7.0s 6.7s 599.6s
2 4 4501 3038.5s 197.28 0.7s 180.1s
5 s 42256 3549.1s 47.58 0.08s 20.8s
3 R 126 3141.08 298.58 26.6s 297.38
3 3 2891 3772.1s 79:6 1.38 51.58
3 4 63691 6332.4s 59.98 0.1s 8.6s
3 5 1354726 13216.4s 122.38 0.015 2.65

Table 4. Ilustration of the effect of the different parameters in the number of cubes, and the derived runtime,
for instance D+7,11. Symmetry breaking is abbreviated as SB. All instances were ran on a 128 cores machine

By applying the symmetry breaking procedure described in Section 3.1, this is further reduced by a constant
factor that converges to 8 asymptotically. Table 3 presents the number of cubes generated under different
parameters for instance D~ while Table 4 presents results for instance D+, .- Note that the best sequential
time for D* = with our cube-and-conquer approach is 2845 seconds, which represents more than a 5x
improvement with respect to the sequential execution shown in Table 2. Moreover, the speed-up we obtain

,10,

from parallelism is almost linear (i.e., best possible), as 128 cores allow for the best parallel runtime to be a
60x improvement over the best sequential runtime (47s vs. 2845s).

Based on these experiences, we approached D* , by setting F = 5 and d = 3. Our rationale for this is twofold. On
the one hand, it can be appreciated from comparing Table 3 and Table 4 that, as the instance to solve gets
o1, the best
combinations are d = 2, F = 5 followed by d = 3, F = 4, so the optimal value of d + F appears to be 7. More in
general the runtime of in-parallel execution can be dominated by the time of the hardest cubes, and thus

larger, the value of d + F for its optimal parameters increase. For example, for instance D+

reducing said time usually improves wall clock time. Both the increase of F and d contribute towards this goal.
On the other hand, it is clear in Table 4 that the total execution time gets larger, and at d = 3, F = 6 there are
more than 100 million cubes, thus making the total execution time unmanagable.

3.3 Partioning the Last Cube

In order to tackle D*, ~we introduced yet another optimization. One can see in practice that the cubes
constructed by Algorithm 1 get progressively harder as f is decreasing. In particular, the cube in which f = 0,
and thus the only condition the cube imposes is that no vertex in B((0, 0), d) receives a color in K, is usually the

one that takes the most time to solve. Especially in the context of parallel execution, runtime can be dominated

dline.info/ stj 25

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

by the time it takes to solve the hardest cube, which motivates us to reduce its difficulty. For this purpose we
introduced a last optimization that we refer to as last cube partitioning that is described next.

The cube constructed by Algorithm 1 with f = 0 is stating that there is a coloring in which no vertex in B((0,0), d)
receives a color in K. Such a coloring can be conditioned on whether it assigns the largest color outside of K to
some vertex in B((0,0), d) or not. If it does not, then we can condition on whether it assigns the second largest
color outside of K to some vertex in in B((0, 0), d), and so on. This way, the hardest cube is broken into B((0,0), d)|
cubes, of which |B((0, 0), d) \ {(0, 0)}| consist of forcing the largest color outside of K to the different positions in
B((0, 0), d) \ {(0,0)}, and the last one (which can be broken down in the same fashion), states that colors in K
u{max(Kc)} are not assigned to any vertex in B((0, 0), d) \ {(0, 0)}. We empirically found that doing two steps of
this recursive partitioning was enough to replace the last cube by a series of cubes that take less than a second
each. Part of our future work includes further experimentation with this optimization.

3.4 Solving D+12,13

Using all optimizations discussed so far, included symmetry breaking, we were able to solve instance D+, . in
less than 48 hours. As our symmetry breaking process has not been formally verified yet (which we leave for
future work), we also solved every cube associated to D* increasing total runtime by a factor of 5. As it was
known before that Xp(7?) 2 13 [11], we use Proposition 5 together with the unsatisfiability result obtained for

D+ , to prove our main theorem.

12,1

12,13,

Theorem 8 Xp(72) 214
Let us now present some data regarding the execution over instance D+, .. Because of parallelization over 128

cores (see Section 2.1), we report both the total execution time (meaning the sum of the time every single cube

12,1

took) and wall clock time. Considering symmetry breaking, there were a total of 1354741 many cubes. The total
execution time was 3200hrs., while wall clock time was 45hrs. Moreover, the average time spent per cube was
only 8.50s., while the hardest cube took 3ohrs. Figure 5 shows how progress (in terms of the number of cubes
solved) evolves over time. Figure 6 shows statistics on the time spent per cube.

4 A Recursive Encoding

This section presents a boolean encoding for B, that is much more asymptotically compactthan D, and how
to combine it with the direct encoding to obtain one that is either equally or more compact than the direct one
in any case.

Theorem 9 There is an encoding C, . for Bn,k that uses O(n*k 1g k) variables and clauses.

The encoding, which we shall call recursive encoding, is composed of two different kinds of variables:

X, representing that vertex v gets color t. (vE B, te [kD).

£ o representing that no vertex in B(v, 2") gets color t. (vEBn’ t €[k], re [lg,(2K)]).

Note immediately that the number of variables matches the promised bound. Just as the direct encoding, we
require for every vertex v a clause stating that it will receive at least one color. The fundamental difference

26 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

with the direct encoding will be in the way that conflicts are handled. We want to enforce that x_, implies no
vertex in B(v, t) \ {v} receives color t. For this purpose we will use a constant number of the f,, variables, for
an appropriate set of choices for v and r.

Let us start by enforcing that the f, variables achieved their desired semantic. We can do so by defining f, , in
terms of the x variables for r = 1, and then using the following recursive implication:

fap, tr =>f2-y),t,r-1Af@+20L),t,riA f@Q, j2r), t, -1 f(,J+2™), t, r-1

1 1
s i
> - i |
§ 0.8 .
£ 06 :
: :
S 04f E]
g .
- i
£o02) : -
c i
0 : | | | | |
0 400 800 1,200 1,600 2,000 2400 2,800 3,200

Total execution time (hrs)

Figure 5. Depiction of the fraction of cubes solved over total execution time. A red dashed line at 359 hours
shows the point at which almost all cubes with f = 5 have been solved

which is illustrated in Figure 7.

With the goal of simplifying the exposition, let us introduce variables w, , that will not be part of the actual
encoding, and thus can be understood as shorthands for an expression we will define later. Semantically, w,
represents that no vertex in B(v, r) gets color t.

Lemma 10 For a fixed vertex v and color t, it is possible to encode that no vertex in B(v, t) \ {v} receives color
t with using only O(1) clauses, without counting the clauses defining the fuv,t,r variables described above.

Proof First, if t < 2, using the direct-encoding for this satisfies the statement. We will thus assume t > 3. As the
construction will depend on the parity of t, Figure 8 illustrates a decomposition for odd values of ¢, while
Figure 9 illustrates a decomposition for even values

of t.

By using at most 12 variables w,, we can enforce that no vertex in B(v, t) \ {v} receives color t. In particular,
let v = (i,j) € V(Z*). Then, enforce 4 constraints of the form “(i+a,j+a;)4(552) for (4;,4;) € {(-1,0),(1,0),(0,~1), (0,1)} we call
these primary constraints.

dline.info/ stj 27

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

10°

Number of cubes
=
S
w

10!
~ =~ = =~ ~ ~ =~ -~ =~ ~ > > = ~
F &I FT FT I I EFITISFFTFTES
oy N © Nd N ' N QS Nd ~ / /] '
2 DTS S 3 5 8§ & & oY %2 0% -
@ @ N 2 - ~ o3 N i N % N S N [\Q
< < S g o o) o N N @ % o > ;
SRR S . S S R B SN A
2 &5 & N 0 IS N N NI Z
NS N A - G
Nl NG [N 43
~— ~
—

Time to solve

Figure 6. Categorization of the time spent per cube. The times are separated into 14 intervals in a geometric
rogression from 0 seconds up to 40 hours, and for each interval the number of cubes whose solution time lies
within the interval is displayed

Figure 7. Illustration for r = 3 of the recursive decomposition for the f variables

Now, to fill in the gaps between the regions, we will enforce secondary constraints. Let us first define t'=(Lt/
2 J +1)/2 and t"= L(t -1)/2 J , and now we proceed to detail the secondary constraints:

LW) j-le) e
2- Wi) jole)

3. Weirle), j-lt), Lt

4 Wele) jole) e

28 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Assuming the w, . constraints enforce the semantic of forbidding color t in B(v, r),then the previous

decomposition does indeed enforce exactly that no vertex in B(v, t) \ {v} receives color t for odd values of t.

However, if t is even, as illustrated in Figure 9, we will need 4 new constraints, that we can call tertiary constraints,
and simply enforce that the 4 vertices orthogonally adjacent to v do not receive color t.

(a) Mlustration of the primary constraints (b) INlustration of the primary and secondary
constraints

Figure 8. Illustration of an odd decomposition for t = 7

It remains to get rid of the assumption about the w ,
each w , constraint can be enforced through 4 clauses using the f,, variables. If r = 27, then w_, is semantic
ally equal to f, and nothing needs to be done. Otherwise, let r* be the largest power of 2 that is smaller than

r. Observe that r* > r/2. Then, if v = (i, j), we can define w,,. as

. variables. This assumption is in fact not too strong, a

w A FGA+A-r9), j+A,(r-r), t, p* .
(Ai’ Aj)e{(_ly 0)’(1’ O))(O’ 1)’(0; _1)}

As the whole-decomposition of the condition we wish to enforce uses 8 of the w constraints, each of which will be
enforced through 4 clauses using the f variables, this requires a total of 32 clauses if t is odd, and 36 clauses if t is
even.

We can see now that the total number of clauses matches the promised bound. Indeed, each f, , = only requires 4
clauses to be properly defined, incurring into O(n’k 1g k) clauses, each vertex v requires 1 big clause stating it gets
at least a color, incurring into O(n®) clauses, and the result of Lemma 10 implies that each variable X, avoids
conflicts in B(v, t) through a constant number of clauses, incurring into O(n*k) clauses. Thus we conclude that
the recursive encoding uses O(n*k 1g k) variables and clauses.

4.1 Compact Encoding

Although the recursive encoding presented above requires asymptotically fewer clauses, it has a larger constant
factor than the direct encoding, and thus it only improves the size of the encoding from a given point onwards.
That is, for every size n, there exists a value p(n), such that it is more efficient to encode conflicts for colors above
p(n) recursively. If p(n) > k, then the direct encoding is best for a given B, ,. This allows to define the compact

dline.info/ stj 29

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

encoding as that in which conflicts are encoded recursively only for colors in which this improves with respect to
the direct encoding. Guaranteeing that the number of clauses created by the compact encoding for B, , is at most
that of the direct encoding for B ,.

4.2 Comparing the Encodings

Table 5 compares the number of variables and clauses for different r x r grids with k colors.We chose to
implement the recursive encoding over grids instead of [-balls for simplicity of implementation. It can be observed
that the compact encoding improves the most in larger instances, such as when trying to prove a lowerbound of
13 or 14. In our experiments up to 13, the compact encoding does not provide a significant speed up in terms of
runtime, and thus so far its interest is mostly theoretical.

(b) HNlustration of the primary and secondary
constraints

(a) Ilustration of the primary constraints

(c) Hlustration of the primary, secondary
and tertiary constraints

Figure 9. Illustration of an even decomposition for t = 6
5. Directed Graphs for Handling Infinite Trees
Another family of infinite graphs for which the packing chromatic number has been studied is that of infinite

perfect n-ary trees T, [3]. It was shown by Sloper that Xp(T) =7, and that Xp(Tn) =ow for n > 3. Moreover,
Fiala and Golovach have shown that computing y, () is NP-hard for an arbitrary tree T'[6]. We will show in this

30 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

(r, k) Direct encoding Recursive encoding Compact encoding
variablesy # clauses| # variables| # clauses | # variables # clauses
(7,8) 392 10325 10072 29573 392 10325
(9,9) 729 27009 17629 54450 729 27009
(10, 10) 1000 44848 25389 78960 1000 44848
(12, 11) 1584 90520 37521 123220 1584 90520
(14, 12) 2352 165088 53005 182544 24256 148508
(17,13) | 3757 327161 76081 277006 39037 245866
(23, 14) 7406 823841 119906 481979 99906 451799

Table 5. Comparison of the size of the instances generated by the direct, recursive, and compact
encodings

section how o (T, = 7 can be established through automated reasoning. Proving xp(Tz) 2 7 is not hard, as it is
enough to consider the first 9 levels of T, (i.e., the subgraph consisting of all vertices at distance at most 8 from
the root), to obtain a sub-graph of T, that cannot be colored with 6 colors.

Figure 10. Illustration of the construction for 72 4

This instance, under the direct encoding, is sufficiently small to be solved in less than 0.1 seconds with CaDiCalL.

However, proving xp(Tz) < 7 requires a new technique. On the one hand, the upper bounds for xp(7*) have been
computed by adding toroidal constraints to square subgrids of 7?2 [11]. This approach cannot be trivially replicated
for the case of T,. On the other hand, the original proof by Sloper does not use a solver, but rather a standard
mathematical argument over a coloring pattern that we suspect was found manually [15].

dline.info/ stj 31

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Even though T, is an undirected graph, we will use a finite directed graph 7', as a proxy to show upper bounds
on x,(T,). The directed graph T’ has vertex set equal to the first [levels of T, directed edges in both directions
between pairs of vertices (u, v) that are also connected in T, and finally directed edges from every leaf u to the
root of the tree.The construction is illustrated in Figure 10. The reason we need directed edges instead of
undirected edges is that otherwise, if two different leaves u, v were connected to the root (which is fundamental
for the coloring to be extendable to T),), they would be at distance 2, whereas their actual shortest path is the
one going through their lowest common ancestor in the tree. Now, let us consider a tree T ,consisting of a root
node r, from which two copies of T, hang. We will encode a packing k-coloring for T, in the following way.

1. Each vertex v, except for r, defines a variable x_, for each color t € [k].

2. For every vertex that is not r, we create a clause stating that it has to receive at least one color, exactly as in the
previous encodings.

3. Consider an isomorphism 7 that goes from the left copy of 7", that hangs from r, to the right copy, and
enforce now that for every vertex v in the left copy, v and 7 (v) receive the same color. That is, X, SXT (v),t
Yt € [k].

4. Create clauses for avoiding conflicts exactly as in the direct encoding, recalling that the distance between two
vertices is now defined as the length of the shortest directed path between them.

Now, the following lemma applies the construction to upper bound xp(T2).

Lemma 11 Let . . be instance resulting from the encoding described above. If I, . 1s satisfiable, then o (T)
<k.

Proof sketch Assume I, , is satisfiable, which induces a packing k-coloring ¢ of the copies of T",in I - We
will obtain a packing k-coloring for T, from ¢. First note that T, can be defined recursively as a root from which
2 copies of T, hang. By expanding this recursive structure [times, we can say T, consists of a binary tree of [
levels, such that from eachleaf there are 2 copies of T, hanging. It suffices to color the first [levels of T,
according to ¢ and then recurse over each copy of T, hanging from a leaf in the [level. Now, in order to see that
this coloring is actually correct we need to verify that it does not create any conflicts between the colors any
pair of vertices receive. Indeed, note that the base case of the recursion cannot create any conflicts as ¢ is a
valid packing k-coloring for T", . Then, between two copies of T that hang from leaves at the I level of T there
cannot be any conflicts either, as any said conflict would have also been a conflict between the copies of T", in
I

Lk*

6. Discussion and Future Work

Although we have managed to reduce the possible values of xp(7?) to {14, 15}, determining xp(7*) will probably
require further techniques. We have studied the impact of different factors on the runtime of lower bounds: the
basic shape of finite graphs to consider, the impact of different forms of symmetry breaking, and the cube-and-
conquer parallelization approach. Proving upper bounds for this problem through local search appears to be
much easier than proving lower bounds (e.g., proving the best known upper bound, 15, requires

32 dline.info/ stj

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

only a few minutes of computation in a personal computer). However, local search is not able to find a solution
for D* . which make us conjecture that xp(Zz) = 15, and our future work is focused on proving this. One
direction of work is studying whether the compact encoding can play a role for proving a lower bound of 15, or
in finding a tiling pattern smaller than the 72 x 72 grid presented by Martin et al. [11]; although its large
constant factor makes it current performance comparable to the direct encoding, part of our future work
includes studying whether the same recursive principle, but under a more efficient decomposition of [-balls,
can result in a practical speed-up. Another line of work is to compare our approach with the Linear
Programming-based approach of Shao and Vesel [14]. In particular, we plan to study whether our approach
can improve bounds for the packing chromatic number of distance graphs. Finally, as shown in Section 5,
automated reasoning techniques are suitable for other classes of graphs as well, and thus several of the open
problems presented in the survey of Bresar et al. [3] could be approached with our techniques.

References

[1] Appel, K., Haken, W. (1977). Every planar map is four colorable. Part I: Discharging. Illinois Journal of
Mathematics, 21(3), 429—490. https://doi.org/10.1215/ijm/1256049011

[2] Biere, A., Fazekas, K., Fleury, M., Heisinger, M. (2020). CaDiCaL, Kissat, Paracooba, Plingeling and
Treengeling entering the SAT Competition 2020. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Jarvisalo, & M.
Suda (Eds.), Proceedings of SAT Competition 2020 — Solver and Benchmark Descriptions (Report No. B-
2020-1, pp. 51-53). University of Helsinki.

[3] Bresar, B., Ferme, J., Klavzar, S., Rall, D. F. (2020). A survey on packing colorings. Discussiones
Mathematicae Graph Theory, 40(4), 923. https://doi.org/10.7151/dmgt.2320

[4] Brown, S. T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N. A. (2021). Bridges-2: A
platform for rapidly-evolving and data intensive research (pp. 1—4). Association for Computing Machinery.

[5] Ekstein, J., Fiala, J., Holub, P., Lidicky, B. (2010). The packing chromatic number of the square lattice is at
least 12. CoRR, abs/1003.2291. Retrieved from https://arxiv.org/abs/1003.2291

[6] Fiala, J., Golovach, P. A. (2008). Complexity of the packing coloring problem for trees. In H. Broersma, T.
Erlebach, T. Friedetzky, & D. Paulusma (Eds.), Graph-Theoretic Concepts in Computer Science (pp. 134—145).
Springer Berlin Heidelberg.

[7] Fiala, J., Klavar, S., Lidicky, B. (2009). The packing chromatic number of infinite product graphs. European
Journal of Combinatorics, 30(5), 1101—1113. https://doi.org/10.1016/j.€jc.2008.09.014

[8] Goddard, W., Hedetniemi, S., Hedetniemi, S., Harris, J., Rall, D. (2008). Braodcast chromatic numbers of
graphs. Ars Combinatoria, 86.

[9] Heule, M. J. H., Kullmann, O., Wieringa, S., Biere, A. (2012). Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In K. Eder, J. Lourenco, & O. Shehory (Eds.), Hardware and Software: Verification and Testing
(pp. 50—-65). Springer Berlin Heidelberg.

dline.info/ stj 33

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

[10] Martin, B., Raimondi, F., Chen, T., Martin, J. (2015). The packing chromatic number of the infinite square
lattice is less than or equal to 16. arXiv preprint arXiv:1510.02374v1. Retrieved from https://arxiv.org/abs/
1510.02374V1

[11] Martin, B., Raimondi, F., Chen, T., Martin, J. (2017). The packing chromatic number of the infinite square
lattice is between 13 and 15. Discrete Applied Mathematics, 225, 136—142. https://doi.org/10.1016/

j.dam.2017.03.013

[12] Neiman, D., Mackey, J., Heule, M. (2020). Tighter bounds on directed ramsey number r(7). arXiv preprint
arXiv:2011.00683. Retrieved from https://arxiv.org/abs/2011.00683

[13] Schwenk, A. (2002). [Private communication with Wayne Goddard].

[14] Shao, Z., Vesel, A. (2015). Modeling the packing coloring problem of graphs. Applied Mathematical
Modelling, 39(13), 3588-3595. https://doi.org/10.1016/j.apm.2014.11.060

[15] Sloper, C. (2004). An eccentric coloring of trees. The Australasian Journal of Combinatorics, 29
[Electronic only].

[16] Soifer, A. (2016). The Hadwiger—Nelson problem. In Springer International Publishing (pp. 439—457).
https://doi.org/10.1007/978-3-319-32162-2_14

[17] Soukal, R., Holub, P. (2010). A note on packing chromatic number of the square lattice. The Electronic
Journal of Combinatorics, 17(1). https://doi.org/10.37236/466

34 dline.info/ stj

