
Bernardo Subercaseaux

Carnegie Mellon University

Pittsburgh, PA, USA

Marijn J.H. Heule

Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT

A packing k-coloring for a graph G = (V, E) is defined as a function that assigns colors from the set {1, ..., k} to

the vertices in V. This assignment must ensure that any two vertices u and v that share the same color c are

separated by a distance greater than c within the graph G. One of the key challenges in the area of packing

colorings is to ascertain the packing chromatic number of the infinite square grid. Prior research has estab-

lished that this number lies between 13 and 15. Our study enhances the lower limit to 14. Additionally, we

introduce a novel encoding method that offers asymptotically greater compactness compared to those

previously employed.

Keywords: Packing Coloring, SAT Solvers, EnCodings

Received: 4 October 2024, Revised 21 December 2024, Accepted 30 December 2024

Copyright: with Authors

1. Introduction

Automated reasoning techniques have been successfully applied to a wide variety of coloring problems, ranging

from the classical computer assisted proof of the Four Color Theorem [1] establishing that 4 colors are enough to

color any planar graph, to partial progress on the Hadwiger-Nelson problem [16] of computing the chromatic

number of the graph with vertex set and edges between points at euclidean distance exactly 1, and computing

Ramsey-like numbers [12] that characterize the minimum size required for a graph to guarantee that all its

colorings will contain certain local structures. In this context, this article’s main focus is the use of automated

reasoning techniques for improving the best known bounds on the packing chromatic number of the infinite

Print ISSN: 2278 – 6449
Online ISSN: 2278 – 6457

STJ 2025: 14 (1)
https://doi.org/10.6025/stj/2025/14/1/17-34

DLINE JOURNALS

 17

Novel Encoding Model for Asymptotically Greater Compactness

Signals and Telecommunication
Journal

dline.info/stj

dline.info/stj 18

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Year Citation Lower Upper
 bound bound

2002 Goddard et al. [8] 9 23

2002 Schwenk [13] 9 22

2009 Fiala et al. [7] 10 23

2010 Soukal and Holub [17] 10 17

2010 Ekstein et al. [5] 12 17

2015 Martin et al. [10] 13 16

2017 Martin et al. [11] 13 15

2022 Our work 14 15

Table 1. Historical summary of the bounds known for 
p
(2)

Note that the standard notion of coloring can be stated as requiring (u) = (v) = c  dist(u, v) > 1, which shows

that packing colorings are a natural generalization. Moreover, the notion of chromatic number can be analogously

defined for packing colorings as follows.

2. Definition Given a graph G = (V,E), define its packing chromatic number 
p
(G) as the minimum value of

k such that G admits a packing k-coloring.

For any k  4, the problem of determining whether a graph G admits a packing 4-coloring is known to be NP-

hard [3].

Example 3. Consider the infinite graph with vertex set and with edges between consecutive integers, which

we denote as 1. A packing 3-coloring is illustrated in Figure 1. On the other hand, by simple examination one

can observe that it is impossible to obtain a packing 2-coloring for 1.

1 It was originally presented under the name of broadcast coloring, motivated by the problem of choosing broadcast

frequencies for radio stations in a non-conflicting way [8], but the literature has preferred the name packing

coloring since [3].

square grid. The notion of packing coloring was introduced in the seminal work of Goddard et al. [8]1, and has

been extensively studied since [3]. Let us now jump to its definition.

1. Definition Given a graph G = (V, E), a packing k-coloring is a mapping : {1, . . . , k} such that for

any pair of distinct nodes u, v  V and any color c {1, . . . , k} it holds that (u) = (v) = c  dist(u, v) > c.

dline.info/stj 19

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Example 3 shows that 
p
(1) = 3. Interestingly, the question of computing 

p
(2) , where 2 is the graph with

vertex set  and edges between orthogonally adjacent points, has been open since the introduction of packing

colorings by Goddard et al. [8]. The first bounds obtained were 9 
p
(2)  23 [8], and before this work, the

best bounds known where 13  
p
(2)  15 by Martin et al. [11]. A summary of the progress until present is

illustrated in Table 1. In what follows, we detail our approach to obtain a lower bound of 14, and present a

theoretically compact encoding as well. For a survey in packing colorings, the reader can refer to that of Brešar

et al. [3].

2. Direct Encoding and Basic Symmetry Breaking

Besides the lower bound of 10 proved by Fiala et al. [7], all other lower bounds have been proved with the help of

computers. Among these, only that of Martin et al. [11] (i.e., the current best bound) was proved with the aid of

SAT solvers. Our work continues along this line.

Proving lower bounds for the packing chromatic number of an infinite graph usually relies on the following

trivial proposition.

Proposition 4 ([8]). Let G be a graph, and H be a sub-graph of G. Then 
p
(H) 

p
(G).

For example, Martin et al. conclude that 
p
(G)  13 by proving that a certain graph H  2 (which consists on

a 14  14 grid, with the number 9 forced in position (7, 12)) does not admit a packing 12-coloring, thus

implying that 
p
(2) 

p
(H) > 12.

The direct encoding for determining whether a finite graph H = (V, E) admits a packing k-coloring for some k is

as follows.

1. Create variables x
v,i

 for each v V and 1  i  k, stating that vertex v receives color i.

2. Create a clause x
v,1
x

v,2
 . . . x

v,k
- 1 x

v, k
 for each vertex vV , implying that every vertex will be assigned

at least some color.

3. For each pair of vertices u, v and color i {dist(u, v), . . . , k}, create a clause x
u,i

 x
v,i

 for bidding that both

u and v get color i.

Let us now denote by B(v, n) := {u  V (2)| dist(u, v)  n} the n-radius ball in 2, and recall that |B(v, n)| = 2n2

+ 2n + 1 = O(n2) for any v. Therefore, to encode whether a given ball B
n
 := B((0, 0), n) admits a packing k-

coloring, the direct encoding requires O(n2k) variables, and its number of clauses is

Figure 1. Illustration for a packing 3-coloring for 1

dline.info/stj 20

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Moreover, let B
n,k

 represent whether B
n
 admits a packing k-coloring. Then, let D

n,k
 be the SAT instance created

with the direct encoding for B
n,k

and let D+
n,k

 be equal to D
n,k

but forcing its central vertex to be assigned color

min(n, k), choice that we justify later on. Namely, adding the unit clause x
(0, 0), min(n,k)

. Figure 2 illustrates a

satisfying assignment for D+ 3, 7.

Proposition 5 If 
p
(2)  min(n, k) for some pair (n, k), and D+

n,k
 is unsatisfiable, then 

p
(2)  k + 1.

Proof If k  n argue as follows. Assume, expecting a contradiction, that 2 admits a packing k-coloring . As 
p
(

2)  k, every  must assign at least one vertex v V (2) to color k (otherwise  would be a packing (k - 1)-

coloring). Now, note that no other vertex besides v can receive color k in B(v, n), and thus  restricted to B(v,

k) provides a satisfiable assignment for D+
n, k

 which contradicts the hypothesis. On the other hand, if k > n,

assume a packing k-coloring  and as 
p
(2)  n, there must exist a vertex v  2 such that (v)  n, Let v be such

that (v)  n is minimized. Then, consider the ball B(v, n) and note that either (v) = n or otherwise (v) > n and

thus {u  B (v, n) | (u) = n} =, by minimality of (v). In either case,  restricted to B(v, n), but assigning color

n to v, provides a satisfiable assignment for D+
n,k

.

Figure 2. Illustration of a satisfying assignment for D+
3,7

As we trivially have that if D
n,k

 is unsatisfiable then 
p

(2)  k, one can prove for example that 
p

(2)  12 by

showing that both D
4,7

and D+
7,11

 are unsatisfiable instances. While this endeavor took Ekstein et al. [5] 120 days

of brute force computation, admittedly with hardware from 2009, a current personal computer is able to prove

the unsatisfiability of D
4,7

 and D+
7,1

 in less than an hour by using some further optimizations we will present

later. Intuitively, the reason to force min(n, k) in the center is that it is the smallest color we can assign that

guarantees no more occurrences besides the center. As in packing colorings smaller colors have densities (i.e.,

fractions of the vertices receiving said colors) that are greater or equal than those of higher colors [3],

dline.info/stj 21

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

forcing a color c to appear only once is more useful the smaller c is, as we are reducing from a higher original
density. Note as well that, as opposed to the previous work that used rectangles to provide lower-bounds [5,
11], our basic shape is an l

1
-ball. Let us present an intuitive reason for why this is a good idea. Consider the

following property: a subgraph H  2 is said to be (n, k)-single, for n k if there is a vertex v V (H) such that
assigning color n to v guarantees that in no packing k-coloring of H other vertex u  v can be assigned color n.
Now note that, for any pair (n, k), it happens that Bn is the smallest (n, k)-single graph in terms of its number of
vertices.

In order to quantitatively understand effect of using l
1
-balls instead of squares, as well as the difference between

D+
n,k

 and D
n,k,

we study the time required to prove a given lower bound 
p
(2)  k with each of them, under the

same hardware. We will use notation S
n

to refer to the square grid of n n, and S
n,k

 to the direct encoding for S
n

with k colors. Moreover, to understand the impact of forcing, let us define S+
n,k

 to be equal to S
n,k,

but with an
added unit clause enforcing that the value at the center of the grid, namely at position (n/2 , n/2) to contain
value min(k, n/2).

Table 2 presents results comparing the runtime of the different alternatives. It can be appreciated that although
there is not a significant difference between shapes alone, the forcing creates a substantial difference. This can
be interpreted as a rather trivial form of symmetry breaking. Empirically we found that l

1
-balls appeared to

work better with the further optimizations we introduce, and thus we stick with them.

2.1 Experimental Setup
In terms of software, experiments from Table 2 were ran on state-of-the-art solver CaDiCaL [2], while
experiments with cube-and-conquer, as those in Table 3 and Table 4 were ran using iLingeling because it
supports incremental

 lower Requires UNSAT of (# vertices) Time
 bound

 Square Square + l
1
-ball l

1
-ball+ Square Square+ l

1
-ball l

1
-ball+

 force force force force

 5 S4,4 (16) S+4.4 (16) D2,4 (13) D+1,4 (5) 0.00s 0.00s 0.00s 0.00s

 6 S5,5 (25) S+5,5 (25) D3,5 (25) D+2,5 (13) 0.00s 0.00s 0.01s 0.00s

 7 S5,6 (25) S+5,6 (25) D4,6 (41) D+3,6 (25) 0.04s 0.04s 0.04s 0.01s

 8 S6,7 (36) S+6,7 (36) D4,7 (41) D+4,7 (41) 0.22s 0.04s 0.20s 0.06s

 9 S7,8 (49) S+7,8 (49) D5,8 (61) D+4,8 (41) 7.00s 0.28s 7.56s 0.28s

 10 S9,9 (81) S+8,9 (64) D6,9 (85) D+5,9 (61) 147.52s 11.82s 159.21s 12.22s

 11 S10,10 (100) S+9,10 (81) D7,10 (113) D+5,10 (61) 2.56hrs 324.49s 3.03hrs 229.76s

 12 S12,11 (144) S+11,11 (121) D8,11 (145) D+,11 (85) >24hrs 4.92hrs >24hrs 5.76hrs

Table 2. Comparison of basic approaches for showing lower bounds on 
p

(2)using CaDiCaL

dline.info/stj 22

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

This equivalence means that we can solve instance by solving a certain numbers of instances of the form C
i

These instances, if the cubes C
i
 are properly designed, should be much easier to solve than the original instance

. Moreover, it is clear from its definition that this approach is well-suited for parallel computation.

Let us now describe the construction of cubes that we used, which is also presented as pseudocode in Algorithm

1. Let F and d be fixed integers. Then, our cubes will be based on forcing up to F colors in the ball B((0, 0), d).

More precisely, consider an instance D+
 n,k,

 and let c = min(n, k) be the color forced at the center. Then, let K = {k,

k -1, . . . , k - F} \ {c} the set of the F highest colors without considering the one forced at the center. Now, for every

value f {F, . . . , 0}, we will create cubes forcing f colors in the following way. For every ordered set O = (o
1
, . . .

, o
f
) consisting of f vertices in B((0, 0), d) \ {(0, 0)}, and every permutation k

1
, . . . , k

f
 of every subset K K, |K2

| = f, create a cube that forces each vertex o
i
 to receive color k

i
, and that asserts as well that colors in K \ K are not

assigned to any vertex in B((0, 0), d).

Example 6 Figure 3 illustrates a cube created for solving the instance D+
5,9,

with parameters F = 4 and D = 3.

In particular K = {6, 7, 8, 9}, and the illustrated cube corresponds to f = 3, K  = {6, 8, 9} and O = ((-1, 2), (1, 1),

(0,-1)).

Let us prove that this construction forms indeed a tautology, while we also point out that we checked with a SAT-

solver that the generated cubes for the instance we ran form indeed a tautology.

solving [9]. In terms of hardware, all our experiments were run in the Bridges2 cluster of the Pittsburgh

Supercomputing Center [4], which has the following specifications:

Two AMD EPYC 7742 CPUS, each with
64 cores

 2.25-3.40GHz

 256MB L3

 8 memory channels

 512GB of RAM

 NVMe SSD (3.84TB)

 Mellanox ConnectX-6 HDR Infiniband 200Gb/s Adapter.

3. Proving that 14 is a Lower Bound

Given that runtime increases exponentially with respect to the number of colors (see Table 2), to solve instance

D+
 12,13

 within a reasonable amount of time, say 48hrs of computation (including parallelism), we required some

further optimizations.

In particular, we followed the cube-and-conquer approach [9]. In a nutshell, cube-andconquer is based on

constructing a tautological DNF formula  = C
1
 C

m
, with cubes C

1
, . . . ,C

m
, and then using the following

identity for any formula :

dline.info/stj 23

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Figure 3. Illustration of a cube for instance D+ 5,9. The ball B((0, 0), 3) is colored with light gray,and

notation 7 is used to indicate that a given cell is forced to not contain color 7

Algorithm 1. CubeConstruction(n, k, d, F)

Proof Consider the cube constructed when f takes value . That cube states that no vertex v B((0, 0), d)

receives any color in K. If that cube holds, then the DNF is satisfied. Otherwise, some vertices in B((0, 0), d) must

receive colors in K. Let

and note that K* is non empty because the cube associated to value f = 0 does not hold. Then, let O*be an

ordered list of vertices getting different colors in K*. As |K| = F, we have |K*| F, and thus O* contains at most

F vertices. These implies that some cube is generated exactly with the values f =|K*|, K=K* and O = O*, and is

by definition satisfied, thus satisfying the DNF.

Lemma 7 The construction of cubes presented in Algorithm 1 results in a tautology.

dline.info/stj 24

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

3.1 Symmetry Breaking
To further optimize performance, there is a simple kind of symmetry breaking we can apply.Indeed, note that

the
1
-ball presents a natural symmetry with respect to 4 different axis,which will allows to asymptotically reduce

the number of cubes to consider by a factor of 8.

More precisely, it suffices to consider cubes in which the largest number forced appearsin a particular octant,

namely {(i, j) | i  , j , i  j}. Thus, we can simply optimize Algorithm 1 by considering only cubes whose

largest forced color lies in said octant. This is illustrated in Figure 4. Despite its simplicity, this form of symmetry

breaking had not been used in the past to the best of our knowledge.

3.2 Number of Generated Cubes
The number of cubes generated by Algorithm 1 is an important parameter of our approach; more cubes usually

imply that each cube is easier to solve, up to a certain point at which the sheer number of cubes becomes the

dominant factor in runtime and thus performance decreases. Moreover, this analysis can become even more

complex in the presence of parallel computation.

First, let us analyze the number of cubes asymptotically. Directly from Algorithm 1 it follows that the number of

cubes for a given value of f is exactly

and thus the total number of cubes is

To obtain a simpler expression we can use the standard bound  (ea/b)b, and note that f = F is the largest

term in the sum, which implies that previous formula is asymptotically bounded above by F(e2(2d2 + 2d)F)
F(3ed)2F .

 d F # cubes # cubes Time cubes w/o SB Time cubes w/ SB

 w.SB total average max total average max

Table 3. Illustration of the effect of the different parameters in the number of cubes, and the derived

runtime, for instance D+
5,10

. Symmetry breaking is abbreviated as SB

2

2

2

3

3

3

2

3

4

2

3

4

1 5 7

1 7 5 3

1 8 0 01

6 0 1

1 3 8 7 3

307009

4 0

4 3 9

45 01

1 2 6

2 8 9 1

6 3 9 6 1

126.71s

145.86s

183.23s

213.10s

400.37s

1204.19s

0.80s

0.08s

0.01s

0.35s

0.02s

0.00s

12.35s

2.75s

0.48s

1.32s

0.39s

0.24s

36.53s

38.43s

45.48s

45.25s

82.90s

1 99 . 41 s

0.91s

0.08s

0.01s

0.33s

0.02s

0.00s

 10.09s

 2.56s

 0.33s

 1.47s

 0.25s

 0.05s

dline.info/stj 25

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Table 4. Illustration of the effect of the different parameters in the number of cubes, and the derived runtime,

 for instance D+7,11. Symmetry breaking is abbreviated as SB. All instances were ran on a 128 cores machine

By applying the symmetry breaking procedure described in Section 3.1, this is further reduced by a constant

factor that converges to 8 asymptotically. Table 3 presents the number of cubes generated under different

parameters for instance D+
5,10,

while Table 4 presents results for instance D+
6,11

. Note that the best sequential

time for D+
6,11

 with our cube-and-conquer approach is 2845 seconds, which represents more than a 5x

improvement with respect to the sequential execution shown in Table 2. Moreover, the speed-up we obtain

from parallelism is almost linear (i.e., best possible), as 128 cores allow for the best parallel runtime to be a

60x improvement over the best sequential runtime (47s vs. 2845s).

Based on these experiences, we approached D+
12,13

 by setting F = 5 and d = 3. Our rationale for this is twofold. On

the one hand, it can be appreciated from comparing Table 3 and Table 4 that, as the instance to solve gets

larger, the value of d + F for its optimal parameters increase. For example, for instance D+
6,11,

 the best

combinations are d = 2, F = 5 followed by d = 3, F = 4, so the optimal value of d + F appears to be 7. More in

general the runtime of in-parallel execution can be dominated by the time of the hardest cubes, and thus

reducing said time usually improves wall clock time. Both the increase of F and d contribute towards this goal.

On the other hand, it is clear in Table 4 that the total execution time gets larger, and at d = 3, F = 6 there are

more than 100 million cubes, thus making the total execution time unmanagable.

3.3 Partioning the Last Cube
In order to tackle D+

12,13
we introduced yet another optimization. One can see in practice that the cubes

constructed by Algorithm 1 get progressively harder as f is decreasing. In particular, the cube in which f = ,

and thus the only condition the cube imposes is that no vertex in B((, ), d) receives a color in K, is usually the

one that takes the most time to solve. Especially in the context of parallel execution, runtime can be dominated

2

2

2

2

3

3

3

3

2

3

4

5

2

3

4

5

40

439

4501

42256

126

2891

63691

1354726

3280.3s

2845.0s

3038.5s

3549.1s

3141.0s

3772.1s

6332.4s

13216.4s

1995.7s

607.0s

197.2s

47.5s

298.5s

79.6s

59.9s

122.3s

82.4s

6.7s

0.7s

0.08s

26.6s

1.3s

0.1s

0.01s

1994.6s

599.6s

180.1s

20.8s

297.3s

51.5s

8.6s

2.6s

d F # cubes Time w. SB
 w. SB

 Total Wall clock Avg. cube Max cube

dline.info/stj 26

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

by the time it takes to solve the hardest cube, which motivates us to reduce its difficulty. For this purpose we

introduced a last optimization that we refer to as last cube partitioning that is described next.

The cube constructed by Algorithm 1 with f =  is stating that there is a coloring in which no vertex in B((,), d)

receives a color in K. Such a coloring can be conditioned on whether it assigns the largest color outside of K to

some vertex in B((,), d) or not. If it does not, then we can condition on whether it assigns the second largest

color outside of K to some vertex in in B((, ), d), and so on. This way, the hardest cube is broken into B((,), d)|

cubes, of which |B((, ), d) \ {(0, 0)}| consist of forcing the largest color outside of K to the different positions in

B((, ), d) \ {(,)}, and the last one (which can be broken down in the same fashion), states that colors in K

{max(Kc)} are not assigned to any vertex in B((, ), d) \ {(, )}. We empirically found that doing two steps of

this recursive partitioning was enough to replace the last cube by a series of cubes that take less than a second

each. Part of our future work includes further experimentation with this optimization.

3.4 Solving D+12,13
Using all optimizations discussed so far, included symmetry breaking, we were able to solve instance D+

12,13
in

less than 48 hours. As our symmetry breaking process has not been formally verified yet (which we leave for

future work), we also solved every cube associated to D+
12,13,

increasing total runtime by a factor of 5. As it was

known before that 
p
(2)  13 [11], we use Proposition 5 together with the unsatisfiability result obtained for

D+
12,13

 to prove our main theorem.

Theorem 8 
p
(2)  14

Let us now present some data regarding the execution over instance D+
12,13

. Because of parallelization over 128

cores (see Section 2.1), we report both the total execution time (meaning the sum of the time every single cube

took) and wall clock time. Considering symmetry breaking, there were a total of 1354741 many cubes. The total

execution time was 3200hrs., while wall clock time was 45hrs. Moreover, the average time spent per cube was

only 8.50s., while the hardest cube took 30hrs. Figure 5 shows how progress (in terms of the number of cubes

solved) evolves over time. Figure 6 shows statistics on the time spent per cube.

4 A Recursive Encoding

This section presents a boolean encoding for B
n,k

that is much more asymptotically compactthan D
n,k,

 and how

to combine it with the direct encoding to obtain one that is either equally or more compact than the direct one

in any case.

Theorem 9 There is an encoding C
n,k

 for Bn,k that uses O(n2k lg k) variables and clauses.

The encoding, which we shall call recursive encoding, is composed of two different kinds of variables:

x
v,t

 representing that vertex v gets color t. (vB
n,

 t[k]).

f
v,t,r

 representing that no vertex in B(v, 2r) gets color t. (vB
n,

t [k], r [lg
2
(2k)]).

Note immediately that the number of variables matches the promised bound. Just as the direct encoding, we

require for every vertex v a clause stating that it will receive at least one color. The fundamental difference

dline.info/stj 27

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

with the direct encoding will be in the way that conflicts are handled. We want to enforce that x
v,t

 implies no

vertex in B(v, t) \ {v} receives color t. For this purpose we will use a constant number of the f
v,t,r

variables, for

an appropriate set of choices for v and r.

Let us start by enforcing that the f
v,t,r

variables achieved their desired semantic. We can do so by defining f
v,t,r

 in

terms of the x variables for r = 1, and then using the following recursive implication:

f (i, j), t, r  f (i 2r - 1, j), t, r - 1 f (i + 2r - 1, j), t, r 1  f (i, j-2r -1), t, r-1 f (i, j + 2r-1), t, r-1

Figure 5. Depiction of the fraction of cubes solved over total execution time. A red dashed line at 359 hours

shows the point at which almost all cubes with f = 5 have been solved

which is illustrated in Figure 7.

With the goal of simplifying the exposition, let us introduce variables w
v,t,r

 that will not be part of the actual

encoding, and thus can be understood as shorthands for an expression we will define later. Semantically, w
v,t,r

represents that no vertex in B(v, r) gets color t.

Lemma 10 For a fixed vertex v and color t, it is possible to encode that no vertex in B(v, t) \ {v} receives color

t with using only O(1) clauses, without counting the clauses defining the fv,t,r variables described above.

Proof First, if t  2, using the direct-encoding for this satisfies the statement. We will thus assume t  3. As the

construction will depend on the parity of t, Figure 8 illustrates a decomposition for odd values of t, while

Figure 9 illustrates a decomposition for even values

of t.

By using at most 12 variables w
v,t,r

we can enforce that no vertex in B(v, t) \ {v} receives color t. In particular,

let . Then, enforce 4 constraints of the form for we call

these primary constraints.

dline.info/stj 28

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Figure 6. Categorization of the time spent per cube. The times are separated into 14 intervals in a geometric

rogression from 0 seconds up to 40 hours, and for each interval the number of cubes whose solution time lies

within the interval is displayed

Figure 7. Illustration for r = 3 of the recursive decomposition for the f variables

Now, to fill in the gaps between the regions, we will enforce secondary constraints. Let us first define t=(t/
2+ 1)/2 and t= (t - 1)/2, and now we proceed to detail the secondary constraints:

1. w
(i-t, j-t,t,t

2. w
(i-t, j-t,t,t

3. w
(i+t, j-t,t,t

4. w
(i+t, j-t,t,t

dline.info/stj 29

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

(a) Illustration of the primary constraints (b) Illustration of the primary and secondary

constraints

It remains to get rid of the assumption about the w
v,t,r

 variables. This assumption is in fact not too strong, a

each w
v,t,r

 constraint can be enforced through 4 clauses using the f
v,t,r

 variables. If r = 2p, then w
v,t,r

is semantic

ally equal to f
v,t,p

 and nothing needs to be done. Otherwise, let r* be the largest power of 2 that is smaller than

r. Observe that r*  r/2. Then, if v = (i, j), we can define w
v,t,r

 as

w
v,t,r
  f (i+

i
(r-r*), j+

j
(r-r*)), t, p* .

                       (
i
,

j
){(-1, 0),(1, 0),(0, 1),(0, -1)}

As the whole-decomposition of the condition we wish to enforce uses 8 of the w constraints, each of which will be

enforced through 4 clauses using the f variables, this requires a total of 32 clauses if t is odd, and 36 clauses if t is

even.

We can see now that the total number of clauses matches the promised bound. Indeed, each f
v,t,r

 only requires 4

clauses to be properly defined, incurring into O(n2k lg k) clauses, each vertex v requires 1 big clause stating it gets

at least a color, incurring into O(n2) clauses, and the result of Lemma 10 implies that each variable x
v,t

 avoids

conflicts in B(v, t) through a constant number of clauses, incurring into O(n2k) clauses. Thus we conclude that

the recursive encoding uses O(n2k lg k) variables and clauses.

4.1 Compact Encoding
Although the recursive encoding presented above requires asymptotically fewer clauses, it has a larger constant

factor than the direct encoding, and thus it only improves the size of the encoding from a given point onwards.

That is, for every size n, there exists a value p(n), such that it is more efficient to encode conflicts for colors above

p(n) recursively. If p(n) > k, then the direct encoding is best for a given B
n,k

. This allows to define the compact

 Figure 8. Illustration of an odd decomposition for t = 7

Assuming the w
v,t,r

 constraints enforce the semantic of forbidding color t in B(v, r),then the previous

decomposition does indeed enforce exactly that no vertex in B(v, t) \ {v} receives color t for odd values of t.

However, if t is even, as illustrated in Figure 9, we will need 4 new constraints, that we can call tertiary constraints,

and simply enforce that the 4 vertices orthogonally adjacent to v do not receive color t.

dline.info/stj 30

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

(a) Illustration of the primary constraints (b) Illustration of the primary and secondary

constraints

(c) Illustration of the primary, secondary
and tertiary constraints

5. Directed Graphs for Handling Infinite Trees

Another family of infinite graphs for which the packing chromatic number has been studied is that of infinite

perfect n-ary trees T
n
 [3]. It was shown by Sloper that 

p
(T

2
) = 7, and that 

p
(T

n
) =  for n  3. Moreover,

Fiala and Golovach have shown that computing 
p
(T) is NP-hard for an arbitrary tree T [6]. We will show in this

Figure 9. Illustration of an even decomposition for t = 6

encoding as that in which conflicts are encoded recursively only for colors in which this improves with respect to

the direct encoding. Guaranteeing that the number of clauses created by the compact encoding for B
n,k

 is at most

that of the direct encoding for B
n,k

.

4.2 Comparing the Encodings
Table 5 compares the number of variables and clauses for different r  r grids with k colors.We chose to

implement the recursive encoding over grids instead of l
1
-balls for simplicity of implementation. It can be observed

that the compact encoding improves the most in larger instances, such as when trying to prove a lowerbound of

13 or 14. In our experiments up to 13, the compact encoding does not provide a significant speed up in terms of

runtime, and thus so far its interest is mostly theoretical.

dline.info/stj 31

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

(r, k) Direct encoding Recursive encoding Compact encoding

 # variables # clauses # variables # clauses # variables # clauses

(7, 8) 392 10325 10072 29573 392 10325

(9, 9) 729 27009 17629 54450 729 27009

(10, 10) 1000 44848 25389 78960 1000 44848

(12, 11) 1584 90520 37521 123220 1584 90520

(14, 12) 2352 165088 53005 182544 24256 148508

(17, 13) 3757 327161 76081 277006 39037 245866

(23, 14) 7406 823841 119906 481979 99906 451799

Table 5. Comparison of the size of the instances generated by the direct, recursive, and compact

encodings

Figure 10. Illustration of the construction for T2 4

This instance, under the direct encoding, is sufficiently small to be solved in less than 0.1 seconds with CaDiCaL.

However, proving 
p
(T

2
) 7 requires a new technique. On the one hand, the upper bounds for 

p
(2) have been

computed by adding toroidal constraints to square subgrids of 2 [11]. This approach cannot be trivially replicated

for the case of T
2
. On the other hand, the original proof by Sloper does not use a solver, but rather a standard

mathematical argument over a coloring pattern that we suspect was found manually [15].

section how 
p

(T
2
) = 7 can be established through automated reasoning. Proving 

p
(T

2
)  7 is not hard, as it is

enough to consider the first 9 levels of T
2
 (i.e., the subgraph consisting of all vertices at distance at most 8 from

the root), to obtain a sub-graph of T
2
 that cannot be colored with 6 colors.

dline.info/stj 32

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

Even though T
2
 is an undirected graph, we will use a finite directed graph T 

l
 as a proxy to show upper bounds

on 
p
(T

2
). The directed graph T

l
 has vertex set equal to the first l levels of T

2
, directed edges in both directions

between pairs of vertices (u, v) that are also connected in T
2
, and finally directed edges from every leaf u to the

root of the tree.The construction is illustrated in Figure 10. The reason we need directed edges instead of

undirected edges is that otherwise, if two different leaves u, v were connected to the root (which is fundamental

for the coloring to be extendable to T
2
), they would be at distance 2, whereas their actual shortest path is the

one going through their lowest common ancestor in the tree. Now, let us consider a tree T
 l

consisting of a root

node r, from which two copies of T
 l

 hang. We will encode a packing k-coloring for T
 l

 in the following way.

1. Each vertex v, except for r, defines a variable x
v,t

 for each color t  [k].

2. For every vertex that is not r, we create a clause stating that it has to receive at least one color, exactly as in the

previous encodings.

3. Consider an isomorphism  that goes from the left copy of T
l
 that hangs from r, to the right copy, and

enforce now that for every vertex v in the left copy, v and  (v) receive the same color. That is, x
v,t

 x  (v),t

t  [k].

4. Create clauses for avoiding conflicts exactly as in the direct encoding, recalling that the distance between two

vertices is now defined as the length of the shortest directed path between them.

Now, the following lemma applies the construction to upper bound 
p
(T

2
).

Lemma 11 Let I
l, k

be instance resulting from the encoding described above. If I
l, k

is satisfiable, then 
p

(T
2
)

 k.

Proof sketch Assume I
l, k

 is satisfiable, which induces a packing k-coloring of the copies of T
l
 in I

l,k
. We

will obtain a packing k-coloring for T
2

from . First note that T
2

can be defined recursively as a root from which

2 copies of T
2
 hang. By expanding this recursive structure l

times, we can say T

2
 consists of a binary tree of l

levels, such that from eachleaf there are 2 copies of T
2
 hanging. It suffices to color the first l

levels of T

2

according to  and then recurse over each copy of T
2
 hanging from a leaf in the l level. Now, in order to see that

this coloring is actually correct we need to verify that it does not create any conflicts between the colors any

pair of vertices receive. Indeed, note that the base case of the recursion cannot create any conflicts as  is a

valid packing k-coloring for T
l
 . Then, between two copies of T

n
that hang from leaves at the lth level of T

n
there

cannot be any conflicts either, as any said conflict would have also been a conflict between the copies of T
l
 in

I
l,k

.

6. Discussion and Future Work

Although we have managed to reduce the possible values of 
p
(2) to {14, 15}, determining 

p
(2) will probably

require further techniques. We have studied the impact of different factors on the runtime of lower bounds: the

basic shape of finite graphs to consider, the impact of different forms of symmetry breaking, and the cube-and-

conquer parallelization approach. Proving upper bounds for this problem through local search appears to be

much easier than proving lower bounds (e.g., proving the best known upper bound, 15, requires

dline.info/stj 33

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

only a few minutes of computation in a personal computer). However, local search is not able to find a solution

for D+
14,14,

which make us conjecture that 
p
(2) = 15, and our future work is focused on proving this. One

direction of work is studying whether the compact encoding can play a role for proving a lower bound of 15, or

in finding a tiling pattern smaller than the 72  72 grid presented by Martin et al. [11]; although its large

constant factor makes it current performance comparable to the direct encoding, part of our future work

includes studying whether the same recursive principle, but under a more efficient decomposition of l
 1
-balls,

can result in a practical speed-up. Another line of work is to compare our approach with the Linear

Programming-based approach of Shao and Vesel [14]. In particular, we plan to study whether our approach

can improve bounds for the packing chromatic number of distance graphs. Finally, as shown in Section 5,

automated reasoning techniques are suitable for other classes of graphs as well, and thus several of the open

problems presented in the survey of Brešar et al. [3] could be approached with our techniques.

References

[1] Appel, K., Haken, W. (1977). Every planar map is four colorable. Part I: Discharging. Illinois Journal of

Mathematics, 21(3), 429–490. https://doi.org/10.1215/ijm/1256049011

[2] Biere, A., Fazekas, K., Fleury, M., Heisinger, M. (2020). CaDiCaL, Kissat, Paracooba, Plingeling and

Treengeling entering the SAT Competition 2020. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, & M.

Suda (Eds.), Proceedings of SAT Competition 2020 – Solver and Benchmark Descriptions (Report No. B-

2020-1, pp. 51–53). University of Helsinki.

[3] Brešar, B., Ferme, J., Klavžar, S., Rall, D. F. (2020). A survey on packing colorings. Discussiones

Mathematicae Graph Theory, 40(4), 923. https://doi.org/10.7151/dmgt.2320

[4] Brown, S. T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N. A. (2021). Bridges-2: A

platform for rapidly-evolving and data intensive research (pp. 1–4). Association for Computing Machinery.

[5] Ekstein, J., Fiala, J., Holub, P., Lidický, B. (2010). The packing chromatic number of the square lattice is at

least 12. CoRR, abs/1003.2291. Retrieved from https://arxiv.org/abs/1003.2291

[6] Fiala, J., Golovach, P. A. (2008). Complexity of the packing coloring problem for trees. In H. Broersma, T.

Erlebach, T. Friedetzky, & D. Paulusma (Eds.), Graph-Theoretic Concepts in Computer Science (pp. 134–145).

Springer Berlin Heidelberg.

[7] Fiala, J., Klavar, S., Lidický, B. (2009). The packing chromatic number of infinite product graphs. European

Journal of Combinatorics, 30(5), 1101–1113. https://doi.org/10.1016/j.ejc.2008.09.014

[8] Goddard, W., Hedetniemi, S., Hedetniemi, S., Harris, J., Rall, D. (2008). Braodcast chromatic numbers of

graphs. Ars Combinatoria, 86.

[9] Heule, M. J. H., Kullmann, O., Wieringa, S., Biere, A. (2012). Cube and conquer: Guiding CDCL SAT solvers

by lookaheads. In K. Eder, J. Lourenço, & O. Shehory (Eds.), Hardware and Software: Verification and Testing

(pp. 50–65). Springer Berlin Heidelberg.

dline.info/stj 34

Signals and Telecommunication Journal Volume 14 Number 1 March 2025

[10] Martin, B., Raimondi, F., Chen, T., Martin, J. (2015). The packing chromatic number of the infinite square

lattice is less than or equal to 16. arXiv preprint arXiv:1510.02374v1. Retrieved from https://arxiv.org/abs/

1510.02374v1

[11] Martin, B., Raimondi, F., Chen, T., Martin, J. (2017). The packing chromatic number of the infinite square

lattice is between 13 and 15. Discrete Applied Mathematics, 225, 136–142. https://doi.org/10.1016/

j.dam.2017.03.013

[12] Neiman, D., Mackey, J., Heule, M. (2020). Tighter bounds on directed ramsey number r(7). arXiv preprint

arXiv:2011.00683. Retrieved from https://arxiv.org/abs/2011.00683

[13] Schwenk, A. (2002). [Private communication with Wayne Goddard].

[14] Shao, Z., Vesel, A. (2015). Modeling the packing coloring problem of graphs. Applied Mathematical

Modelling, 39(13), 3588–3595. https://doi.org/10.1016/j.apm.2014.11.060

[15] Sloper, C. (2004). An eccentric coloring of trees. The Australasian Journal of Combinatorics, 29

[Electronic only].

[16] Soifer, A. (2016). The Hadwiger–Nelson problem. In Springer International Publishing (pp. 439–457).

https://doi.org/10.1007/978-3-319-32162-2_14

[17] Soukal, R., Holub, P. (2010). A note on packing chromatic number of the square lattice. The Electronic

Journal of Combinatorics, 17(1). https://doi.org/10.37236/466

