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ABSTRACT

The significance of this study is rooted in the increasing dependence on solar
energy as a primary source of renewable power. Solar energy facilities provide
cost-effective operation, simple upkeep, and a high level of dependability, making
them a compelling choice for the generation of clean energy. Nonetheless, the
performance of these facilities can be greatly affected by outside elements such
as climate conditions and the physical attributes of the solar panels. This
document explores various forecasting periods, from immediate to extended,
and examines the appropriateness of various models, including artificial neural
networks, time-series forecasting, machine learning, and combination
approaches, for these purposes. By analyzing data from a solar energy facility,
the research evaluates multiple regression models to determine the most
accurate one. The Gradient Boosting Regressor was found to be the most
effective, showcasing its capability in precisely predicting solar energy production.
The success of this approach highlights the potential for more efficient integration
of solar energy facilities into smart grid systems and the enhancement of energy
management strategies. The study introduces a reliable method for real-time
forecasting of solar energy facility performance, which could greatly improve
energy management and the incorporation of renewable energy sources into
power grids. It paves the way for further research on enhancing forecasting
methods and emphasizes the importance of precise prediction models in the
development of renewable energy technologies.
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1. Introduction

With the growing popularity of clean energy, solar power plants have become
one of the leading renewable sources [14]. Solar power plants have a fairly
low cost, are easy to operate, and have high reliability and durability. This
and a number of other economic factors have led to a significant increase in
the number of households and communities in Ukraine equipped with solar
power plants.

However, due to a large number of external factors, the efficiency of solar
power plants is quite unpredictable. Weather factors (solar radiation, air
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temperature, cloud cover, humidity) play a key role in their operation [13, 19]. The position
of the solar panels themselves, their type and characteristics also have an impact.
Therefore, an important task is to introduce systems for forecasting the generated electricity
for more efficient energy management, as well as to simplify the process of integrating
solar power plants into Smart Grid systems [5, 6, 21].

Smart Grid systems are becoming increasingly relevant in the world of modern energy
technologies, as they play a key role in transitioning to a sustainable and efficient energy
infrastructure.

Let's consider several aspects that highlight the importance and relevance of Smart
Grid:

1. Integration of renewable energy sources: Smart grids facilitate the more efficient
integration of various renewable sources, such as solar panels and wind turbines, enabling
quick response to changes in energy production, which is inherently variable in nature.

2. Enhancing energy system reliability: Smart Grids ensure greater reliability of the
energy system by early detection and automatic rectification of faults in the power grid.
This helps minimize downtime and impacts on consumers.

3. Efficiency in energy flow management: With the aid of modern data analysis and
management technologies, Smart Grids allow for the optimization of energy distribution
according to demand, time of day, and other factors, thereby reducing costs and energy
consumption.

4. Improvement of consumer experience: Smart meters and consumption management
systems integrated into Smart Grids provide consumers with detailed information about
their energy consumption, enabling them to better plan their expenses and usage.

5. Climate change adaptation: Smart Grids play a crucial role in combating climate change
by optimizing the use of renewable sources and reducing dependence on fossil fuels, thus
contributing to the reduction of greenhouse gas emissions.

6. Energy security: Smart Grids help ensure energy security at the national level by
enabling efficient responses to energy crises and rapidly adapting resources in the face of
energy challenges or instability. With analytical capabilities and real-time data, Smart Grids
can redistribute energy within the grid, reducing the risk of major outages or supply
disruptions.

7. Engaging consumers in energy system management: Smart Grids empower consumers
to become active participants in the energy market through home solar installations, energy
storage systems, or participation in demand response programs. This not only improves
energy efficiency but also promotes the decentralization of energy resources.

Given these advantages, Smart Grids are a necessary condition for modern energy systems
seeking stability, economic efficiency, and reduced environmental impact. These systems
play a crucial role in shaping the future energy landscape and addressing global energy
challenges.

2. State of the Art

Currently, there are a large number of models and methods for predicting the efficiency of
solar power plants [4].

Depending on the duration of forecasts, forecasting can be divided into:

1. Very short term forecasting. This horizon focuses on immediate future predictions,
ranging from seconds to less than 30 minutes. It's crucial for real-time energy management,
enabling operators to respond swiftly to sudden changes in solar power generation. This
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forecasting is pivotal for maintaining grid stability, especially in systems with significant
solar penetration, by aiding in the instantaneous balancing of supply and demand. Very
short-term forecasts are utilized for dynamic grid operations, including real-time electricity
dispatch, power smoothing, and PV storage control. They assist in optimizing the grid's
responsiveness to fluctuations in solar energy production, ensuring efficient and reliable
energy delivery.

2. Short-Term forecasting. Short-term forecasting typically spans from 30 minutes to
several hours or days. It's essential for day-to-day operational planning and energy market
transactions. Accurate short-term forecasts help in scheduling power plant operations,
managing energy storage systems, and facilitating efficient energy trading. Applications:
This horizon supports economic load dispatch, power system operation, and the integration
of renewable energies into power management systems. It helps utilities and grid
operators plan for energy production, distribution, and consumption, minimizing operational
costs and enhancing grid reliability [8].

3. Intra-Day Forecasting. Intra-day forecasting, covering a span of 1 to 6 hours, bridges
the gap between short-term and medium-term horizons. It's particularly useful for
managing energy supply and demand within the same day, offering insights into how
solar power output will vary over several hours. This forecasting horizon is valuable for
electricity trading, where energy prices fluctuate throughout the day, and for managing
zone-specific electric loads. It aids in making informed decisions on energy procurement,
storage, and distribution within daily operational cycles.

4. Medium-Term Forecasting. Medium-term forecasting ranges from 6 to 24 hours,
extending up to a week or month in some contexts. It provides a broader outlook on solar
power generation, enabling strategic decisions related to maintenance scheduling, energy
procurement, and system optimization. Utilities and energy managers use medium-term
forecasts for maintenance planning of power systems, ensuring optimal operation of
equipment and integration of solar power. It also supports better planning for energy
trading and load forecasting over a week or month.

5. Long-Term Forecasting. Long-term forecasts predict solar power generation beyond
24 hours, often extending to months or a year. This horizon is critical for strategic planning,
investment decisions, and policy formulation, offering a long-range view of energy
generation trends and potential impacts on the grid. Long-term forecasting is used for
capacity planning, investment analysis, and policy-making. It helps stakeholders anticipate
future energy production, enabling informed decisions on infrastructure development,
resource allocation, and renewable energy integration strategies. Depending on the
required forecasting horizon and the available data, the required forecasting method will
depend on the forecasting method.

The methods can be divided into the following:

o Artificial Neural networks. ANNs are computational models inspired by the human
brain's network of neurons. They consist of input, hidden, and output layers with
interconnected nodes (neurons) that process data and can learn from it. ANNs are
particularly effective in handling nonlinear and complex data patterns, making them ideal
for forecasting tasks where traditional linear models fall short [3]. Typically used for short-
term forecasting, ANNs can predict solar power output for a few hours to several days
ahead, adapting to the dynamic nature of solar irradiance.

e Time-series forecasting methods. This approach includes methods such as exponential
smoothing, autoregressive moving average (ARMA), and autoregressive integrated moving
average (ARIMA). Time series analysis aims to predict future values by analyzing patterns
in past data [8]. It was found that the ARIMA model more accurately predicts the operation
of a solar station for a 24-hour period compared to other models.

e Machine learning. These methods rely on the ability of Al to learn from historical data
and improve predictions through iterative learning [2]. The main methods in this category
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include multilayer perceptron neural networks (MLPNN), recurrent neural networks (RNN),
and feed-forward neural networks. Machine learning is used for forecasting in different
ranges - from 30 minutes to 24 hours.

e Physical and statistical models. These methods, based on solar panel characteristics
and historical data, use mathematical equations to extract patterns and correlations to
reduce error and increase forecasting accuracy. These methods include curve fitting,
moving average (MA), and autoregressive models (AR). Usually, these methods are used
for forecasting from one day. The forecast can be extended for several months or years
[4, 9].

e Ensemble methods combine multiple individual models to improve forecast accuracy
and reliability. By leveraging the strengths and mitigating the weaknesses of each model,
ensemble techniques often achieve better performance than any single forecasting
method. This approach can integrate diverse models like ANNs, time-series methods,
and other machine learning algorithms. While commonly applied to medium-term
forecasting, ensemble techniques can be tailored for short-term and long-term forecasting,
offering a versatile solution for various prediction needs.

e Nowcasting (Intra-Hour Forecasting). Nowcasting focuses on predicting the immediate
future, utilizing real-time data to make short-term predictions. This approach is crucial for
applications where timely and accurate forecasts are essential, such as in managing
solar power grids where sudden changes in solar irradiance can impact grid stability.
Very short-term, concentrating on the imminent future from seconds to up to an hour,
making it indispensable for operational decision-making in energy management and grid
control.

3. Statement of the Research Problem

The primary objective of this research is to develop a robust method for real-time
forecasting of solar power plant efficiency utilizing regression models. Given the
unpredictable efficiency of solar power plants due to external factors like weather
conditions and the physical characteristics of solar panels, it is crucial to enhance
forecasting accuracy to support efficient energy management and integration into smart
grid systems. The task involves testing various regression models, including Gradient
Boosting Regressor, to determine which model provides the best accuracy in predicting
solar power output. This research aims to provide insights into optimizing solar power
plant operations and advancing renewable energy technologies.

The subject of this research is the development and analysis of regression models for
forecasting the efficiency of solar power plants. The study focuses on the impact of external
factors, such as weather conditions and the state of solar panels, on the accuracy of
predicting solar energy production. Particular attention is given to the adaptation and
optimization of regression models, especially the Gradient Boosting Regressor, for real-
time use within the context of energy management and integration of solar power plants
into smart grid systems.

The object of this research is solar power plants and their operation under various weather
and operational conditions. The study explores the specifics and dynamics of the efficiency
of solar panels, which are influenced by external factors such as solar radiation and
temperature changes. The impact of these factors on energy production is analyzed,
which is critically important for developing more accurate forecasting methods and
optimizing the operation of solar power plants in the context of modernizing energy
infrastructure.

This research makes a significant contribution to the field of solar power plant efficiency
forecasting by employing innovative regression models optimized for real-time operation.
The core scientific novelty lies in the development of a methodology that integrates external
factors, such as weather conditions and the condition of solar panels, directly into the
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forecasting model. Utilizing the Gradient Boosting method along with other regression
models tailored to minimize forecasting errors, the study addresses key limitations of
standard approaches that often fail to consider the complexity and dynamics of solar
power plant operational characteristics. This approach can significantly enhance the
accuracy of energy flow management in conditions of unstable energy production, which
is crucial for the integration of solar power plants into smart grid systems and improving
the overall efficiency of renewable energy utilization.

4. Dataset

The data on electricity generation and station temperature were obtained from a solar
power plant located in Zelene village, Husiatyn district, Ternopil region (lat: 49.313965,
long: 26.098843). The station is shown in Figure 1. The rated capacity of the plant is
30kW. The generated energy is converted using 3 inverters. The output power data of
the power plant is collected for each inverter separately.

Figure 1. Photo of the solar power plant in Zelene village The forecasting uses data from a solar power
plant obtained from January 1,2019 to December 31, 2022. The granularity of the data is 30 seconds.
The data is available only for the period of the day when there was power at the inverters’ output
(practically equal to the duration of daylight hours).

4.1. Factors affecting the forecast of solar power plant efficiency

The Open Meteo website [10] was used to obtain historical weather indicators. Based on
the literature analysis, a list of weather indicators that have a significant impact on the
quality of electricity generation forecasts was identified:

¢ Air temperature (°C)

Humidity (%)

e Atmospheric pressure(hPa)

e Wind speed at a height of 10 meters above the earth’s surface (km/h)
e Percentage of cloudiness (%)

e Percentage of cloud transparency (%)
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e Direct solar radiation (W/m?)
e Scattered solar radiation (W/m?)

The granularity of the available data is 1 hour. To obtain historical data on the position of
the sun in the specified coordinates (zenith, azimuth, and altitude), we used the
Solcast.com website [17].

The following indicators were also used from this resource:

¢ Air temperature (°C)

¢ Air humidity (%)

e Atmospheric pressure (hPa)

e Radiation values obtained by the Clear Sky method (W/m?) [16]

The granularity of the available data is 30 seconds. To check the existing dependence
between the selected indicators and the efficiency of a solar power plant, a correlation
matrix was built based on the Pearson correlation coefficient (Figure 2).
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Figure 2. Correlation matrix based on Pearson’s correlation coefficient

4.2, Dataset Normalization
Since the data have different granularity and duplicate indicators, the following steps
were taken to normalize them:

1. The total capacity of the solar power plant was calculated by summing the removal of
individual inverters.

2. The sun’s azimuth is converted to a modulo value. Thus, a scale from 0 to 180 points
was obtained, which corresponds to the deviation of the sun from the south (Figure 3).

3. The average air temperature, humidity, and atmospheric pressure are calculated
between Open Meteo and Solcast.
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4. Using the SunCalc library [18], we calculated the duration of daylight hours in minutes.
5. All indicators are reduced to a granularity of one hour by calculating the average value.

As aresult, we obtained a data set of 18840 records, which consists of the following
data:

e Power of the solar station (W)

e Radiator temperature (°C)

e Module temperature (°C)

e Sunrise

e Sun azimuth

e Height of the sun above sea level

e Air temperature (°C)

e Air humidity (%)

e Atmospheric pressure (hPa)

e Wind speed (km/h)

e Percentage of cloud cover (%)

e Percentage of cloud transparency (%)
e Direct solar radiation (W/m?2)

e Scattered solar radiation (W/m?2)

¢ Radiation values obtained by the Clear Sky method (W/m?2)

The data granularity is 1 hour.

0°
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S
180°

How to enter the Azimuth value in the Solcast API

Figure 3. Scale of sun deviation from the south [15]
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5. Regression Model for Predicting the Efficiency of a Solar Power Plant

One of the research objectives is to predict online performance, which is adjusted by
updating weather indicators. Therefore, it was decided to use regression models for
forecasting, which are faster than neural networks and their input data can be variable.

To examine the regression models results quantity, Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were used.

MSE measures the average of the squares of the errors - that is, the average squared
difference between the estimated values and the actual value. MSE is calculated as the
mean of the squared differences between predicted and actual values. MSE is very
sensitive to large errors due to squaring each term, which means it gives a relatively
high weight to large errors. This property can be very useful when large errors are
particularly undesirable.

MAE measures the average magnitude of the errors in a set of predictions, without
considering their direction (i.e., it takes the average over the absolute values of the
errors). MAE is calculated as the mean of the absolute differences between predicted
and actual values. MAE is particularly robust to outliers as it does not square the errors
before summing them. It provides a linear score that reflects the average error magnitude.

MAPE expresses the accuracy as a percentage, and it measures the average absolute
percent error for each prediction error compared to the actual value. MAPE is calculated
as the mean of the absolute differences between the predicted and actual values, divided
by the actual values, typically expressed as a percentage. MAPE is easy to interpret as a
percentage, which makes it straightforward for communicating model performance.
The forecasting took place in several stages.

1. The interquartile range (IQR) method was used to identify and remove outliers.

2. The data was divided into training (January 1, 2019 - December 31, 2021) and test

inputpower_total(W)
4000 .

s . ol @ g . o . “*5p) + TRAINING SET
: ; TEST SET

3000

2000

1000

Timestamp

Figure 4. Data distribution by the educational library

3. Additional time identifiers (hour, day, quarter) were created for the test dataset.

4. Several regression models were used for forecasting. Each model is trained on a
training dataset and makes predictions on a test dataset. Table 1 compares the quality
the models used.
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5. The GridSearchCV function was used to select the model parameters with the best
performance.

6. Based on the best of the selected Gradient Boosting Regressor models, the forecasting
was performed. The quality indicators were:

Mean Squared Error: 488590.0169641469

Mean Absolute Error:

526.9728465745633

Mean Absolute Percentage Error: 184.08511806925392

AdaBoost

SVM

Random Forest

Gradient Boosting

704809.2438455686

497419.2943262356

585418.3816034624

1129798.3849226362

556.3300289324546

519.460641187808

616.2476624437463

728.1819757662427

Model MSE MAE MAPE

LightGBM 568934.1545839079 528.9011747899133]154.2357938049348
XBGRegressor 650515.7686498845 567.5401797341103 | 186.9378575677895
CatBoost 604615.6297283806 564.6730864737467 | 200.8061044696372

138.8617765424779

164.4226289699118

293.4843335358631

10.78685738411315

Table 1. Comparison of quality metrics of the models used

Figure 5 shows a comparison of real and predicted data. Forecasting errors were calcu-
lated and analyzed by day.
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Figure 5. Comparison of real and predicted data

7. Future time stamps and time features for the future period were generated, based on
which the forecasting was performed. The forecasting results are shown in Figure 6.

Using the Gradient Boosting Regressor regression model, we obtained fairly accurate
forecasting results. Larger deviations in winter are explained by the shorter daylight hours
when solar panels are in operation. Accordingly, this leads to a reduction in the amount of
data on which to base forecasts. This is also affected by stable weather and the presence
of snow on the panels, which reduces their efficiency. Other researchers have also noted
similar deviations in their work [1, 7, 12].
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Figure 6. Forecasting results
5. Conclusions

This study presents a novel method for real-time forecasting of solar power plant efficiency,
leveraging regression models to predict performance based on historical weather data
and the solar power plant’s operational data. By examining the forecasting accuracy of
various models, the research identifies the Gradient Boosting Regressor as the most
effective, enabling more efficient integration of solar power into smart grid systems and
optimizing energy management practices.

The research emphasizes the importance of accurate and real-time efficiency predictions
for solar power plants, which face efficiency variability due to external factors like weather
conditions and the physical characteristics of solar panels. Through comprehensive data
normalization and testing of several regression models, the study offers insights into the
critical role of weather indicators and solar panel positioning in solar power generation.
It highlights the potential of regression models, particularly the Gradient Boosting
Regressor, in enhancing forecasting accuracy, thereby supporting better energy
management and integration of renewable energy sources into power systems.

The method developed in this study is a significant contribution to the field of renewable
energy, providing a robust framework for predicting the efficiency of solar power plants
in realtime. It opens up new possibilities for research into improving forecasting techniques
and underscores the vital importance of accurate prediction models in advancing renewable
energy technologies. Future efforts should focus on addressing the challenges of seasonal
variations and external factors like snow coverage to further refine predictive capabilities.
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