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ABSTRACT

This study explores how Long Short-Term Memory (LSTM) neural networks can be
used as Maximum Power Point Tracking (MPPT) controllers for solar panels. It compares
existing MPPT algorithms like Perturb and Observe (P&0O), Incremental Conductance
(IncCond), and Hill Climbing (HC) with LSTM-based methods in terms of their accuracy,
efficiency, and ability to adapt. Data on voltage, current, power output, temperature,
and solar irradiance from various locations are utilized to train and assess the LSTM
model. The findings show that LSTM-based MPPT controllers are more effective than
traditional methods, providing better tracking precision and the ability to adjust to
changing environmental conditions. The research emphasizes the importance of LSTM-
based controllers in improving the efficiency of solar panels and increasing the amount
of energy collected. This study aids in the development of renewable energy
technologies and highlights the role of artificial intelligence in optimizing solar energy
systems.
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Copyright: with Author(s) he tjlization of renewable energy sources has become increasingly imperative
in light of global efforts to mitigate climate change and reduce dependency on
fossil fuels. Among these sources, solar energy holds particular promise due to
its abundance and sustainability. Maximizing the efficiency of solar panels plays
a crucial role in harnessing this energy resource effectively for sustainable power
generation.

1. Introduction

The transition towards renewable energy sources is driven by the need to
mitigate environmental degradation caused by traditional energy production
methods. Solar energy, in particular, offers a clean and abundant alternative to
fossil fuels. However, the efficiency of solar panels, which directly impacts energy
output, is paramount for ensuring the viability of solar power as a sustainable
energy solution [1, 2, 3]. Thus, efforts to enhance solar panel efficiency are
essential for advancing renewable energy utilization and reducing carbon
emissions.
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Maximizing the power output of solar panels is inherently challenging due to variations in
environmental conditions such as sunlight intensity and temperature. Maximum Power
Point Tracking (MPPT) algorithms are instrumental in optimizing solar panel performance
by continuously adjusting the operating point to extract maximum power from the solar
array. Traditional MPPT techniques, including Perturb and Observe (P&Q) [4], Incremental
Conductance (IncCond) [5], and Hill Climbing (HC) [6], have been widely employed for this
purpose. However, these methods have inherent limitations in terms of accuracy, efficiency,
and adaptability to changing environmental conditions [7].

In recent years, artificial intelligence (AI) techniques have emerged as promising tools for
improving the efficiency of renewable energy systems. Long Short-Term Memory (LSTM)
neural networks, a type of recurrent neural network (RNN), offer significant potential for
enhancing MPPT precision and adaptability in solar panel systems. Unlike traditional MPPT
algorithms, LSTM networks can effectively capture temporal dependencies in the input
data and learn complex patterns, enabling more accurate and dynamic control of solar
panel operation [8, 9]. The application of LSTM neural networks represents a novel approach
to addressing the challenges associated with traditional MPPT techniques, thereby unlocking
new opportunities for optimizing solar energy harvesting.

This research paper aims to investigate the efficacy of LSTM-based MPPT controllers for
enhancing solar panel efficiency. The paper is structured as follows: after this introduction,
Section 2 provides a comprehensive review of related works, including traditional MPPT
techniques and recent advancements in Al-based approaches. Section 3 outlines the
methods and materials employed in the research, including data collection, LSTM
architecture, and training procedures. Following this, Section 4 presents the experimental
results, comparing the performance of LSTMbased MPPT controllers with conventional
algorithms. Section 5 discusses the implications of the findings, including limitations,
advantages, and potential applications of LSTM-based MPPT controllers. Finally, Section 6
concludes the paper by summarizing key findings and emphasizing the significance of
LSTM-based approaches for enhancing solar panel efficiency.

2. Related Works

Maximizing the power output of solar panels has been a subject of extensive research,
leading to the development of various Maximum Power Point Tracking (MPPT) techniques.
This section provides a thorough survey of both traditional MPPT algorithms and recent
advancements in Al-based approaches.

2.1. Survey of MPPT Techniques

Traditional MPPT algorithms play a fundamental role in optimizing solar panel performance
under varying environmental conditions. Perturb and Observe (P&0O), Incremental
Conductance (IncCond), and Hill Climbing (HC) are among the most commonly used
techniques in this regard.

Perturb and Observe (P&Q) [4] is a simple yet widely employed MPPT method that perturbs
the operating point of the solar panel and observes the resulting change in power output
to determine the direction of adjustment (Figure 1). While P&O is straightforward to
implement, it may suffer from oscillations around the maximum power point and slow
convergence under rapidly changing conditions.

Incremental Conductance (IncCond) [5] algorithm utilizes the derivative of the power voltage
characteristic curve to dynamically adjust the operating point towards the maximum power
point (Figure 2). Compared to P&0O, IncCond offers improved tracking accuracy and faster
convergence, especially under varying irradiance levels. However, it may exhibit instability
issues in certain scenarios, particularly when the system operates near the maximum
power point.

Hill Climbing (HC) algorithm [6] iteratively adjusts the operating point in the direction of
increasing power output until the maximum power point is reached (Figure 3). HC is known
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Figure 1. Flowchart of Perturb and Observe (P&O) method [10]

for its simplicity and robustness in various environmental conditions. However, it may
suffer from slow convergence and susceptibility to local maxima, leading to suboptimal
performance, especially under rapidly changing conditions.

2.2. Advancements in AI for MPPT

Recent advancements in artificial intelligence (AI) have revolutionized maximum power
point tracking (MPPT) techniques for photovoltaic (PV) systems. Several studies have
explored the application of Al algorithms, particularly Long Short-Term Memory (LSTM)
neural networks, to enhance MPPT accuracy and efficiency, especially in challenging
scenarios such as partial shading conditions (PSC) and dynamic environmental changes.
In a comprehensive review, (Seyedmahmoudian et al., 2016) [13] discussed various Al
based MPPT techniques, highlighting their robustness and reliability under diverse
conditions. The review categorized AI methods based on their performance and
applicability, providing valuable insights for researchers and engineers working with PV
based power systems. Another survey by (Raj et al., 2022) [14] provided a thorough
examination of Al-based MPPT algorithms in PV systems, categorizing them based on
their application strategies and analyzing their merits and demerits. The study aimed to
assist users in selecting the most suitable Al-based MPPT technique according to their
specific project requirements and system constraints.

The study by (Aouchiche et al.,, 2018) [15] proposed a novel approach using the Moth-
Flame Optimization algorithm (MFO) for global MPPT in PV plants under partial shading. By
combining Global MPPT (GMPPT) and Distributed MPPT (DMPPT) techniques, the proposed
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Figure 2. Flowchart of Incremental Conductance (IncCond) method [11].

method effectively mitigated the drawbacks of PSC and improved PV system performance.
Furthermore, (Amrouche et al., 2007) [16] proposed an Al-based Perturb and Observe
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Figure 3. Flowchart of Hill Climbing (HC) method [12]
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(P&0O) MPPT method for PV systems, aiming to overcome the drawbacks of traditional
algorithms such as slow response speed and oscillations around the maximum power
point. By utilizing Artificial Neural Networks (ANN) to approximate the perturbation step,
the proposed method achieved improved performance and stability.

Additionally, (Kumar et al., 2022) [8] introduced a novel MPPT controller based on a Rain
Optimization Algorithm (ROA) and Bidirectional LSTM (Bi-LSTM) neural network for grid
connected hybrid solar-wind systems. The proposed controller effectively tracked the
maximum power from solar PV and wind sources under varying climatic conditions,
contributing to stable power flow and grid integration. Lastly, (Pengcheng et al., 2021) [9]
conducted simulation experiments using LSTM neural networks and attention mechanisms
for MPPT in PV systems, demonstrating the potential of Al-based approaches in improving
power generation efficiency.

The study highlighted the importance of addressing data nonlinearity and feature
sparseness in real-world scenarios to enhance MPPT performance.

Studies have demonstrated the effectiveness of LSTM-based MPPT controllers in improving
tracking accuracy and adaptability compared to traditional methods. By leveraging historical
data and learning from past experiences, LSTM networks can predict the optimal operating
point of solar panels more accurately, even under rapidly changing environmental conditions.
Additionally, LSTM-based approaches offer potential for realtime optimization and can adapt
to fluctuations in solar irradiance and temperature more effectively than conventional
algorithms.

3. Methods and Materials

This section outlines the methodology employed for data collection, LSTM architecture,
and training procedures for LSTM-based MPPT controllers in solar panel systems.

3.1. Data Collection

Data collection is a crucial step in training and validating LSTM-based MPPT controllers. To
ensure comprehensive coverage of environmental conditions, data is collected from various
solar power plants located across different regions, such as Europe, North America and
Oceania. The collected dataset includes measurements of voltage, current, and power
output of solar panels, recorded at regular intervals. Additionally, external factors such as
temperature and solar irradiance are incorporated into the dataset to capture their influence
on solar panel performance.

By gathering data from diverse geographical locations and environmental conditions, the
dataset provides a comprehensive basis for training and testing LSTM models for MPPT
control. A sample of the collected data is shown in the Table 1.

3.2. LSTM Architecture and Functioning

Long Short-Term Memory (LSTM) neural networks are a type of recurrent neural network
(RNN) designed to capture long-term dependencies in sequential data. LSTM networks
are particularly well-suited for processing time-series data, making them suitable for dynamic
MPPT control in solar panel systems. The architecture of an LSTM network consists of
multiple memory cells and gating mechanisms that regulate the flow of information through
the network. This allows LSTM models to retain information over extended time periods
and learn complex patterns in the input data [17].

In the context of MPPT control, LSTM models function by processing historical data of solar
panel performance and environmental conditions to predict the optimal operating point
for maximizing power output. By leveraging past observations, LSTM networks can
adaptively adjust the operating point in response to changing environmental conditions,
thus improving the efficiency of solar panel systems.
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Date Voltage Current Power Temperaturi Irradiange
2023-06-01
10:00:00 112.76 2.49 281.58 25 563.67
2023-06-01
10:01:00 113.09 2.48 280.88 25 565.55
2023-06-01
10:02:00 13.53 2.51 285.57 25 567.43
2023-06-01
10:03:00 113.85 2.50 284.80 25 569.31
2023-06-01
10:04:00 114.21 2.50 286.11 25 571.18
2023-06-01
10:05:00 114.56 2.51 288.48 25 573.06
2023-06-01
10:06:00 114.95 2.50 287.68 25 574.94
2023-06-01
10:07:00 115.31 2.50 289.39 25 576.82
2023-06-01
10:08:00 115.75 2.49 289.33 25 578.70
2023-06-01
10:09:00 116.13 2.48 288.35 25 580.58
2023-06-01
10:10:00 116.46 2.51 293.33 25 582.46

Table 1. Sample solar power plant data with 1-minute intervals

3.3. Training and Implementation

The training of LSTM networks for MPPT control involves several steps. Firstly, the collected
dataset is pre-processed to remove noise and outliers and normalize the input features.
Next, the dataset is partitioned into training, validation, and testing sets to facilitate
model evaluation. The LSTM network is then trained using the training data, with the
objective of minimizing the prediction error between the actual and predicted maximum
power points.

After training, the LSTM model is integrated into the control system of solar panel arrays.
Real-time data from sensors in a simulated environment measuring voltage, current,
temperature, and solar irradiance are fed into the LSTM model, which generates predictions
of the optimal operating point. These predictions are then used to dynamically adjust the
operating parameters of the solar panels, thereby maximizing power output.

4. Experiment

This section elucidates the experimental procedures employed to evaluate the performance
of LSTM-based MPPT controllers in solar panel systems.
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4.1. Parameter Selection and Control Mechanism

The selection of input parameters and the design of the output control mechanism are
crucial aspects of developing an effective LSTM-based MPPT controller. In our case the
input parameters include measurements of solar irradiance, temperature, voltage, and
current, which are essential for accurately predicting the maximum power point of the
solar panel. Additionally, historical data of power output and environmental conditions
are used to capture temporal dependencies and improve prediction accuracy.

The output control mechanism of the LSTM model involves determining the optimal operating
point of the solar panel based on the predicted maximum power point. This involves
adjusting the duty cycle of a DC-DC converter or controlling the voltage and current levels
to maximize power output. The design of the output control mechanism aims to dynamically
adapt the operating parameters of the solar panel system in response to changing
environmental conditions, thereby optimizing energy harvesting efficiency.

4.2, Training Procedure

The training procedure for the LSTM model involves several steps to ensure optimal
performance and generalization ability. Firstly, the collected dataset is divided into training,
validation, and testing sets using a suitable partitioning strategy. Between random sampling
and time-based splitting the latter was chosen to maintain the continuity among the
datapoints which gives the LSTM more opportunities to learn repeating patterns in the
data. The training set is used to update the parameters of the LSTM network through
backpropagation and gradient descent, while the validation set is utilized to monitor model
performance and prevent overfitting.

During training, hyperparameters such as learning rate, batch size, and number of epochs
are tuned to optimize model performance. Regularization techniques such as dropout and
early stopping are also employed to prevent overfitting and improve generalization ability.
Once training is complete, the trained LSTM model is evaluated on the testing set to
assess its performance in unseen data.

4.3. Fine-tuning of the LSTM Model

Fine-tuning the LSTM model is an iterative process aimed at improving its performance in
MPPT control [18]. This involves adjusting hyperparameters, retraining the model with
additional data, and fine-tuning the network architecture to better capture complex
patterns in the input data. Between fine-tuning techniques such as grid search and
Bayesian optimization, grid search was employed due to it's simplicity to systematically
explore the hyperparameter space and identify the optimal configuration for the LSTM
model. Finetuning the LSTM model is essential for achieving high accuracy and robustness
in real-world applications of solar panel systems.

5. Results

This section presents the experimental findings obtained from comparing the performance
of LSTM-based MPPT controllers with conventional algorithms, along with an evaluation of
the accuracy, efficiency, and adaptability of the LSTM model under various conditions.

5.1. Experimental Findings

The averaged output of a photovoltaic system with different MPPT controllers across
different times of day is shown in the Table 2. The experimental results demonstrate the
efficacy of LSTMbased MPPT controllers in optimizing solar panel performance compared
to traditional algorithms such as Perturb and Observe (P&0), Incremental Conductance
(IncCond), and Hill Climbing (HC). The LSTM-based controller exhibits superior tracking
accuracy and adaptability to changing environmental conditions, resulting in higher energy
yields across different scenarios.

Under varying solar irradiance levels and temperature gradients, the LSTM-based MPPT
controller consistently outperforms traditional algorithms in maintaining the solar panel
operating point at or near the maximum power point. This is evidenced by the higher
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Time of Day Perturb and Observe Incremental LSTM-based
Conductance Hill Climbing approach
00:00 0.00 0.00 0.00 0.00
01:00 0.00 0.00 0.00 0.00
02:00 0.00 0.00 0.00 0.00
03:00 0.00 0.00 0.00 0.00
04:00 0.00 0.00 0.00 0.00
05:00 0.00 0.00 0.00 0.00
06:00 15.83 17.55 16.69 19.55
07:00 93.74 103.94 98.83 115.75
08:00 175.17 194.23 184.67 216.30
09:00 211.86 234.92 223.36 261.60
10:00 234.98 260.56 247.73 290.15
11:00 247.04 273.94 260.45 305.05
12:00 251.32 278.68 264.96 310.33
13:00 246.04 272.82 259.39 303.81
14:00 240.01 266.13 253.03 296.36
15:00 228.95 253.87 241.37 282.71
16:00 211.86 234.92 223.36 261.60
17:00 170.64 189.22 179.90 210.71
18:00 94.74 105.06 99.88 116.99
19:00 42.97 47.65 45.30 53.06
21:00 0.00 0.00 0.00 0.00
22:00 0.00 0.00 0.00 0.00
23:00 0.00 0.00 0.00 0.00

Table 2. Solar photovoltaic generation (W) with different MPPT controllers

dline.info/tmd

69




power output achieved by the LSTM-based controller compared to conventional methods,
particularly during transient conditions and partial shading events.

5.2. Evaluation of Accuracy, Efficiency, and Adaptability

The comparison of MPPT controllers’ performance on a cloudless day is shown on Figure
4. However, the accuracy of the LSTM model is assessed based on its ability to predict the
maximum power point of the solar panel accurately under diverse environmental conditions.
Comparative analysis with traditional algorithms reveals that the LSTM-based MPPT
controller achieves higher accuracy in tracking the optimal operating point, resulting in
increased energy harvesting efficiency. For instance, during the hours with variable solar
irradiance, the LSTM-based MPPT controller managed to produce 19.01% more power
than P&O controller, 10.19% more power than IncCond controller and 14.62% more power
than HC controller. The LSTM-based controller exhibits robustness in adapting to rapid
fluctuations in environmental conditions, effectively optimizing power output and mitigating
the effects of partial shading and other transient phenomena. During the ideal conditions
all controllers operate within the margin of error from each other.
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Figure 4. Comparison of solar panel output with different MPPT controllers

Furthermore, the efficiency of the LSTM model is evaluated in terms of its computational
complexity and real-time performance. Despite the additional computational overhead
associated with training and implementing LSTM networks, the experimental results
demonstrate that the LSTM-based MPPT controller maintains high efficiency in predicting
the maximum power point and dynamically adjusting the operating parameters of the
solar panel system.

Overall, the experimental findings underscore the effectiveness of LSTM-based MPPT
controllers in enhancing solar panel efficiency and energy harvesting capabilities, there
by contributing to the advancement of renewable energy technologies.

6. Discussions

This section engages in discussions surrounding the limitations and challenges encountered
during experimentation, interpretation of findings, analysis of advantages and
disadvantages of using LSTM neural networks for MPPT control, and proposes future
research directions in the field.
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6.1. Limitations and Challenges

Despite the promising results obtained, several limitations and challenges were
encountered during the experimentation phase. One notable challenge is the complexity
of training LSTM networks, which requires large amounts of data and computational
resources. Additionally, the generalization ability of the LSTM model may be limited by the
specific conditions and datasets used for training, leading to potential performance
degradation in real-world applications.

6.2. Interpretation of Findings

The experimental findings underscore the potential of LSTM-based MPPT controllers in
significantly improving solar panel efficiency and energy harvesting capabilities. By leveraging
the temporal dependencies in input data, LSTM networks demonstrate superior accuracy
and adaptability compared to traditional MPPT algorithms. The interpretation of findings
suggests that LSTM-based approaches hold promise for enhancing the performance of
solar panel systems under diverse environmental conditions, contributing to the
advancement of renewable energy technologies and sustainability efforts.

6.3. Advantages and Disadvantages

The analysis of advantages of using LSTM neural networks for MPPT control highlights
their ability to capture long-term dependencies and complex patterns in time-series data,
enabling more accurate and dynamic control of solar panel systems. Additionally, LSTMbased
approaches offer potential for real-time optimization and adaptability to changing
environmental conditions. However, disadvantages such as computational complexity,
requirement for extensive training data, and potential overfitting remain challenges to be
addressed.

6.4. Future Research Directions

Future research in the field of LSTM-based MPPT controllers may explore potential
applications, scalability, and hybrid approaches to further enhance performance and
applicability. One direction is the investigation of hybrid models that combine traditional
MPPT algorithms with LSTM-based approaches to leverage the strengths of both methods.
Additionally, research on optimizing the computational efficiency of LSTM networks and
improving generalization ability in realworld scenarios is warranted. Furthermore, scalability
and deployment of LSTM-based MPPT controllers in large-scale solar panel systems merit
exploration to facilitate widespread adoption and maximize energy harvesting efficiency.

7. Conclusions

This section provides a summary of the key findings and contributions of the study,
emphasizing the significance of LSTM-based MPPT controllers in enhancing solar panel
efficiency and contributing to sustainable energy production.

7.1. Key Findings and Contributions

In summary, the study investigated the efficacy of LSTM-based MPPT controllers for
optimizing solar panel performance. Experimental results demonstrated that LSTM-based
controllers outperform traditional MPPT algorithms in terms of accuracy, efficiency, and
adaptability. By leveraging the temporal dependencies in input data, LSTM networks
accurately predict the maximum power point of solar panels under diverse environmental
conditions, thereby maximizing energy harvesting efficiency. The study contributes to
advancing the field of renewable energy technologies by showcasing the potential of AI
based approaches in enhancing solar panel efficiency.

7.2. Significance of LSTM-based MPPT Controllers

The significance of LSTM-based MPPT controllers lies in their ability to address the inherent
challenges of traditional algorithms and improve the efficiency of solar panel systems. By
leveraging the capabilities of LSTM neural networks, these controllers offer enhanced
accuracy and adaptability, enabling more effective utilization of solar energy resources.
LSTM-based MPPT controllers play a crucial role in advancing sustainable energy production

dline.info/tmd 71



4. Results

In our broad study and comparative assessment of machine learning models for the
predictive analysis and diagnostic evaluation of armored vehicle engine health, an array of
models was implemented. Rigorous evaluation was conducted on the performance and by
maximizing the power output of solar panels and reducing dependency on fossil fuels. As
such, they represent a promising avenue for realizing the transition towards a more
sustainable and environmentally friendly energy future.
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