Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 2230 – 8776
Online ISSN:


  About JISM
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Journal of Information & Systems Management (JISM)

Deploying Computational Intelligence for Logistics and Supply Chain
Evelin Krmac
University of Ljubljana Pot pomoršèakov 4 Portoroz 6320, Slovenia
Abstract: The supply chain industry has used extensive computational intelligence solutions from the scientific focus where the important challenges are addressed more effectively. Computational intelligence is playing a major role in supply chain and offer better prospects for business. Thus, many academic researchers started to do good amount of research in its applications to business. The awareness and relevance of the computational intelligence for supply chain is considered by more business sector people.
Keywords: Artificial Intelligence, AI, Logistics, Supply Chain, digitalization
DOI:https://doi.org/10.6025/jism/2020/10/4/111-126
Full_Text   PDF 1.03 MB   Download:   293  times
References:

[1] Inc, G., Top 10 Strategic Technology Trends for 2019, ed, 2019.
[2] McKinsey & Company. (2016). Supply Chain 4.0 - the next generation digital supply chain, ed, 2016.
[3] Research. D. T. (2019). Logistics Trend Radar, ed, 2019.
[4] Costello, K. (2019). Gartner Predicts the Future of AI Technologies, ed, 2019.
[5] Research, D. T. (2018). Artificial Intelligence in Logistics, ed, 2018.
[6] Lalla-Ruiz, E., Melián-Batista, B., Marcos Moreno-Vega, J. (2012). Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem, Engineering Applications of Artificial Intelligence, 25 (6), p 1132-1141, 2012, doi: https://doi.org/10.1016/j.engappai.2012.06.001.
[7] Zakeri, A., Saberi, M., Hussain, O. K., Chang, E. (2018). An early detection system for proactive management of raw milk quality: an australian case study, IEEE Access, 6, p 64333-64349, 2018, doi: 10.1109/ACCESS.2018.2877970.
[8] Guin, U., Huang, K., Dimase, D., Carulli, J. M., Tehranipoor, M., Makris, Y. (2014). Counterfeit integrated circuits: A rising threat in the global semiconductor supply chain, In: Proceedings of the IEEE, 102 (8), p1207-1228, 2014, doi:10.1109/ JPROC.2014.2332291.
[9] Dias, J. C. Q., Calado, J. M. F., Osório, A. L., Morgado, L. F. (2009). RFID together with multi-agent systems to control global value chains, Annual Reviews in Control, vol. 33, no. 2, p 185-195, 2009, doi: https://doi.org/10.1016/ j.arcontrol.2009.03.005.
[10] Wi’cek, P. (2016). Intelligent Approach to Inventory Control in Logistics under Uncertainty Conditions, Transportation Research Procedia, vol. 18, p 164-171, 2016, doi: https://doi.org/10.1016/j.trpro.2016.12.023.
[11] Thiel, M., Hinckeldeyn, J., Kreutzfeldt, J. (2018). Deep learning for 3D object recognition in logistics, Logistics Journal, vol. 2018, no. 1, 2018, doi: 10.2195/lj_Proc_thiel_de_201811_01.
[12] Arunachalam, D., Kumar, N., Kawalek, J. P. (2018). Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice, Transportation Research Part E: Logistics and Transportation Review, vol. 114, p 416-436, 2018, doi: https://doi.org/10.1016/j.tre.2017.04.001.
[13] Singh, A., Shukla, N., Mishra, N. (2018). Social media data analytics to improve supply chain management in food industries, Transportation Research Part E: Logistics and Transportation Review, vol. 114, pp. 398-415, 2018, doi: https://doi.org/10.1016/j.tre.2017.05.008.
[14] Govindan, K., Cheng, T. C. E., Mishra, N., Shukla, N. (2018). Big data analytics and application for logistics and supply chain management,” Transportation Research Part E: Logistics and Transportation Review, vol. 114, p 343-349, 2018, doi: https://doi.org/10.1016/j.tre.2018.03.011.
[15] Zeidler, F., Bayhan, H., Venkatapathy, A. K. R., Hompel, M. T. (2017). Reference field for research and development of novel hybrid forms of human machine interaction in logistics, Logistics Journal, 2017, doi: 10.2195/lj_Proc_zeidler_de_201710_01.
[16] Dereli, T., Das, G. S. (2010). Development of a decision support system for solving container loading problems, Transport, 25 (2), p 138-147+Ib+IIb, 2010, doi: 10.3846/transport.2010.17.
[17] Madigan, D., Mittal, S., Roberts, F. (2011). Efficient sequential decision-making algorithms for container inspection operations, Naval Research Logistics, 58 (7), p 637-654, 2011, doi: 10.1002/nav.20472.
[18] Abukhousa, E., Al-Jaroodi, J., Lazarova-Molnar, S., Mohamed, N. (2014). Simulation and modeling efforts to support decision making in healthcare supply chain management, The Scientific World Journal, 2014, doi: 10.1155/2014/354246.
[19] Zhao, M., Liu, X. (2018). Development of decision support tool for optimizing urban emergency rescue facility locations to improve humanitarian logistics management, Safety Science, 102, p110-117, doi: https://doi.org/10.1016/j.ssci.2017.10.007.
[20] Pratikakis, N. E., Realff, M. J., Lee, J. H. (2010). Strategic capacity decision-making in a stochastic manufacturing environment using real time approximate dynamic programming, Naval Research Logistics, 57 (3), p 211-224, 2010, doi: 10.1002/nav.20384.
[21] Wu, C.-L., Law, K. (2019). Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model, Transportation Research Part E: Logistics and Transportation Review, 122, p 62-77, 2019, doi: https://doi.org/10.1016/j.tre.2018.11.004.
[22] Diana, T. (2018). Can machines learn how to forecast taxi-out time? A comparison of predictive models applied to the case of Seattle/Tacoma International Airport, Transportation Research Part E: Logistics and Transportation Review, vol. 119, p 149- 164, 2018, doi: https://doi.org/10.1016/j.tre.2018.10.003.
[23] Xie, G., Zhang, N., Wang, S. (2017). Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology, Transportation Research Part E: Logistics and Transportation Review, vol. 108, pp. 160-178, 2017, doi: https://doi.org/10.1016/j.tre.2017.08.015.
[24] Nikolopoulos, K. I., Bavbai, M. Z., Bozos, K. (2016). Forecasting supply chain sporadic demand with nearest neighbor approaches, International Journal of Production Economics, vol. 177, p 139-148, 2016, doi: https://doi.org/10.1016/ j.ijpe.2016.04.013.
[25] Regue, R., Recker, W. (2014). Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem, Transportation Research Part E: Logistics and Transportation Review, vol. 72, p 192-209, 2014, doi: https:// doi.org/10.1016/j.tre.2014.10.005.
[26] Shahrabi, J., Mousavi, S. S., Heydar, M. (2009). Supply chain demand forecasting: A comparison of machine learning techniques and traditional methods, Journal of Applied Sciences, 9 (3), p 521-527, 2009, doi: 10.3923/jas.2009.521.527. [27] Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M. J. (2017). Big Data in Smart Farming – A review, Agricultural Systems, vol. 153, pp. 69-80, 2017, doi: 10.1016/j.agsy.2017.01.023.
[28] Xie, G., Zhao, Y., Jiang, M., Zhang, N. (2013). A novel ensemble learning approach for corporate financial distress forecasting in fashion and textiles supply chains, Mathematical Problems in Engineering, 2013, doi: 10.1155/2013/493931.
[29] Mukhutdinov, D., Filchenkov, A., Shalyto, A., Vyatkin, V. (2019). Multi-agent deep learning for simultaneous optimization for time and energy in distributed routing system, Future Generation Computer Systems, 94, p 587-600, 2019, doi: https://doi.org/10.1016/j.future.2018.12.037.
[30] Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., Hashemi, H. (2017). A new enhanced support vector model based on general variable neighborhood search algorithm for supplier performance evaluation: A case study, International Journal of Computational Intelligence Systems, vol. 10, no. 1, p 293-311, 2017, doi: 10.2991/ijcis.2017.10.1.20.
[31] Asgari, Z., Rahimian, F. P. (2017). Advanced Virtual Reality Applications and Intelligent Agents for Construction Process Optimisation and Defect Prevention, Procedia Engineering, 196, p 1130-1137, 2017, doi: https://doi.org/10.1016/ j.proeng.2017.08.070.
[32] Permin, E., et al. (2016). Self-optimizing Production Systems, Procedia CIRP, 41 p. 417-422, 2016, doi: https:// doi.org/10.1016/j.procir.2015.12.114.
[33] Mastrocinque, E., Yuce, B., Lambiase, A., Packianather, M. S. (2013). A multi-objective optimization for supply chain network using the bees algorithm, International Journal of Engineering Business Management, 5(1), p 1-11, 2013, doi: 10.5772/56754.
[34] Schönberger, J., Kopfer, H. (2012). A Procedural Framework for Hybrid Decentralized Decision Problem Solving, IFAC Proceedings Volumes, vol. 46, no. 9, pp. 724-729, 2013, doi: https://doi.org/10.3182/20130619-3-RU-3018.00517.
[35]Chen, S., Zheng, Y., Cattani, C., Wang, W. (2012). Modeling of biological intelligence for SCM system optimization, Computational and Mathematical Methods in Medicine, vol. 2012, doi: 10.1155/2012/769702.
[36] Andradóttir, S., Prudius, A. A. (2010). Adaptive random search for continuous simulation optimization, Naval Research Logistics, 57 (6), p 583-604, 2010, doi: 10.1002/nav.20422.
[37] Tse, Y. K., Chan, T. M., Lie, R. H. (2009). Solving complex logistics problems with multi-artificial intelligent system, International Journal of Engineering Business Management, vol. 1, no. 1, pp. 37-48, 2009, doi: 10.5772/6781.
[38] Pendharkar, P., Nanda, S. (2006). A misclassification costminimizing evolutionary-neural classification approach, Naval Research Logistics, 53 (5), p 432-447, 2006, doi: 10.1002/nav.20154.
[39] Bollapragada, R., Sadeh, N. M. (2004). Proactive release procedures for just-in-time job shop environments, subject to machine failures, Naval Research Logistics, 51 (7), p 1018-1044, 2004, doi: 10.1002/nav.20036.
[40] Yang, C., Xu, T., Yang, R., Li, Y. (2018). Multi-agent single objective negotiation mechanism of personalized product supply chain based on personalized index, Advances in Mechanical Engineering, 10 (10), 2018, doi: 10.1177/ 1687814018795785.
[41] Knoll, D., Prüglmeier, M., Reinhart, G. (2016). Predicting Future Inbound Logistics Processes Using Machine Learning, Procedia CIRP, vol. 52, p 145-150, 2016, doi: https://doi.org/10.1016/j.procir.2016.07.078.
[42] Sousa, A. R., Tavares, J. J. P. Z. S. (2013). Toward Automated Planning Algorithms Applied to Production and Logistics, IFAC Proceedings Volumes, vol. 46, no. 24, pp. 165-170, 2013, doi: https://doi.org/10.3182/20130911-3-BR-3021.00081.
[43] Kazemi, A., Fazel Zarandi, M. H. (2008). An agent-based framework for building decision support system in supply chain management, Journal of Applied Sciences, 8 (7), p 1125-1137, 2008, doi: 10.3923/jas.2008.1125.1137.
[44] R. Kuenzel, J. Teizer, M. Mueller, and A. Blickle, SmartSite: Intelligent and autonomous environments, machinery, and processes to realize smart road construction projects, Automation in Construction, vol. 71, p 21-33, 2016, doi: https:// doi.org/10.1016/j.autcon.2016.03.012.
[45] Kang, Y., Lee, S., Chung, B. D. (2019). Learning-based logistics planning and scheduling for crowdsourced parcel delivery, Computers & Industrial Engineering, vol. 132, pp. 271-279, 2019, doi: https://doi.org/10.1016/j.cie.2019.04.044.
[46] Sadrnia, A., Ismail, N., Zulkifli, N., Ariffin, M. K. A., Nezamabadi-Pour, H., Mirabi, H. (2013). A multiobjective optimization model in automotive supply Chain networks, Mathematical Problems in Engineering, 2013, doi: 10.1155/2013/ 823876.
[47] Maheut, J., Garcia-Sabater, J. P. (2013). Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem, Journal of Industrial Engineering and Management, 6 (3), SPL.ISS, p 779-795, 2013, doi: 10.3926/jiem.550.
[48] Proon, S., Jin, M. (2011). A genetic algorithm with neighborhood search for the resource-constrained project scheduling problem, Naval Research Logistics, 58 (2), p 73-82, 2011, doi: 10.1002/nav.20439.
[49] Buthod-Garçon, S., Dumoulin, M., Trilling, L. (2000). Experiments with Constraint Based Long Term Scheduling of Jobs, IFAC Proceedings Volumes, 33 (17), p 941-943, 2000, doi: https://doi.org/10.1016/S1474-6670(17)39530-7.
[50] Norman, B. A., Bean, J. C. (1999). A Genetic Algorithm Methodology for Complex Scheduling Problems, Naval Research Logistics, 46 (2), p 199-211, 1999, doi: 10.1002/(SICI)1520-6750(199903)46:2<199::AIDNAV5> 3.0.CO;2-L.
[51] Hartmann, S. (1998). A competitive genetic algorithm for resourceconstrained project scheduling, Naval Research Logistics, 45(7), p 733-750, 1998, doi: 10.1002/(SICI)1520- 6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C.
[52] McMullen, P. R. (2001). An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives, Artificial Intelligence in Engineering, 15 (3), p 309-317, 2001, doi: https://doi.org/10.1016/S0954- 1810(01)00004-8.
[53] Heilig, L., Lalla-Ruiz, E., Voß, S. (2017). Multi-objective interterminal truck routing,” Transportation Research Part E: Logistics and Transportation Review, 106, p 178-202, 2017, doi: https://doi.org/10.1016/j.tre.2017.07.008.
[54] Kim, K. Y., Kim, K. H. (2003). Heuristic algorithms for routing yardside equipment for minimizing loading times in container terminals, Naval Research Logistics, 50 (5), p 498-514, 2003, doi: 10.1002/nav.10076.
[55] Castillo-Villar, K. K. (2014). Metaheuristic algorithms applied to bioenergy supply chain problems: Theory, review, challenges, and future,” Energies, 7 (11), p 7640-7672, 2014, doi: 10.3390/en7117640.
[56] Lee, C. K. M., Ho, W., Ho, G. T. S., Lau, H. C. W. (2011). Design and development of logistics workflow systems for demand management with RFID, Expert Systems with Applications, 38 (5), p 5428-5437, 2011, doi: https://doi.org/10.1016/ j.eswa.2010.10.012.
[57] Shokouhyar, S., Seifhashemi, S., Siadat, H., Ahmadi, M. M. (2019). Implementing a fuzzy expert system for ensuring information technology supply chain, Expert Systems, 36 (1), 2019, doi: 10.1111/exsy.12339.
[58] Sitek, P., Wikarek, J., Nielsen, P. (2017). A constraint-driven approach to food supply chain management, Industrial Management and Data Systems, 117 (9), p 2115-2138, 2017, doi: 10.1108/IMDS-10-2016-0465.
[59] Aguezzoul, A. (2014). Third-party logistics selection problem: A literature review on criteria and methods, Omega, vol. 49, p 69-78, 2014, doi: https://doi.org/10.1016/j.omega.2014.05.009.
[60] Vahdani, B., Iranmanesh, S. H., Mousavi, S. M., Abdollahzade, M. (2012). A locally linear neuro-fuzzy model for supplier selection in cosmetics industry, Applied Mathematical Modelling, 36 (10), p 4714-4727, 2012, doi:https://doi.org/10.1016/ j.apm.2011.12.006.
[61] Merlino, M., Spro#e, I. (2017). The Augmented Supply Chain, Procedia Engineering, vol. 178, pp. 308-318, 2017, doi: https://doi.org/10.1016/j.proeng.2017.01.053.
[62] Tavasszy, L., Friedrich, H. (2019). Supply chain elements in freight transport modelling, Transportation Research Part E: Logistics and Transportation Review, vol. 121, p 1-3, 2019, doi: https://doi.org/10.1016/j.tre.2018.11.009.
[63] Yu, B., Guo, Z., Asian, S., Wang, H., Chen, G. (2019). Flight delay prediction for commercial air transport: A deep learning approach, Transportation Research Part E: Logistics and Transportation Review, vol. 125, p 203-221, 2019, doi: https://doi.org/10.1016/j.tre.2019.03.013.
[64] Piendl, R., Matteis, T., Liedtke, G. (2019). A machine learning approach for the operationalization of latent classes in a discrete shipment size choice model, Transportation Research Part E: Logistics and Transportation Review, vol. 121, p 149-161, 2019, doi: https://doi.org/10.1016/j.tre.2018.03.005.
[65] KBosowski, G., Gola, A., Amila, T. (2018). Computational Intelligence in Control of AGV Multimodal Systems, IFACPapersOnLine, 51 (11), p 1421-1427, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.08.315.
[66] Feng, T., Timmermans, H. J. P. (2016). Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data, Transportation Planning and Technology, 39 (2), p 180-194, 2016, doi: 10.1080/ 03081060.2015.1127540.
[67] Qinzhen, L., Rongsheng, L., Yanxia, L., Shillips, L. (2013). Study on campaigns logistics military container transportation management information system based on multi-agent, Journal of Applied Sciences, 13(21), p 4495-4500, 2013, doi: 10.3923/jas.2013.4495.4500.
[68] García, J., et al. (2013). Combining linear programming and automated planning to solve intermodal transportation problems, European Journal of Operational Research, 227 (1), p 216-226, 2013, doi: https://doi.org/10.1016/ j.ejor.2012.12.018.
[69] Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse, International Journal of Information Management, vol. 45, p 176-190, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2018.11.008.
[70] Miao, Z., Cai, S., Xu, D. (2014). Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the crossdock management system, Expert Systems with Applications, 41 (1), p 16-22, 2014, doi: https://doi.org/10.1016/ j.eswa.2013.07.007.
[71] Estanjini, R. M., Li, K., Paschalidis, I. C. (2012). A least squares temporal difference actor-critic algorithm with applications to warehouse management, Naval Research Logistics, 59(3-4), p 197-211, 2012, doi: 10.1002/nav.21481.
[72] R. Grzeszick, S. Feldhorst, C. Mosblech, M. ten Hompel, and G. A. Fink, Camera-assisted pick-by-feel, Logistics Journal, vol. 2016, 2016, doi: 10.2195/lj_Proc_grzeszick_en_201610_01.
[73] MathWorks. (2019). What Is machine Learning? 3 things you need to know, ed, 2019.
[74] Badar, A., U. B.S., Junghare, A. S. (2014). Study of Artificial Intelligence Optimization Techniques applied to Active Power Loss Minimization, ed. International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014), IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 2014, p 39-45.
[75] Pomerol, J.-C. (1997). Artificial intelligence and human decision making, vol. 99, ed: European Journal of Operational Research, 1997, p 3-25.
[76] Inc, G., (2019). Five Questions for a Successful AI Project, ed, 2019.
[77] Burkhardt, R., Hohn, N., Wigley, C. (1999). Leading your organization to responsible AI, ed: McKinsey Analytics, 2019. Milovanovic, B., Stankovic, Z., Ivkovic, S., Stankovic, V., Loaded Cylindrical Metallic Cavities Modeling using Neural Networks, TELSIKS’99, Conference Proceedings, p 214-217, Nis, Yugoslavia, 1999.
[78] Haykin, S. (1994). Neural Networks, New York, IEEE Press, 1994.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info