Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 2349-8161
Online ISSN: 2349-817X


  About ISEJ
  Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Contact us
 
  For Authors
  Guidelines for Contributors
Online Submission
Statement of Ethics and Responsibilities
Review Policies
Transfer of Copyright
Archiving Policy
Call for Papers
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Information Security Education Journal (ISEJ)
 

Converter Design for Serial Pseudo and Natural Code
Dragan Denic, Goran Miljkovic, Jelena Lukic, Miodrag Arsic and Dragan Živanovic
Faculty of Electronic Engineering at University of Niš Aleksandra Medvedeva 14 18000 Niš, Serbia
Abstract: Pseudorandom / natural code conversion time is the most important factor for the absolute position measurement cycle when using the pseudorandom positions encoder. Serial code converters are simple to implement and have advantages over other converters. In this paper, we provide examples of serial pseudo / natural code converters and a proposal for a new, faster converter.
Keywords: Position Measurement, Pseudorandom Position Encoder, Serial Pseudorandom/Natural Code Converter Converter Design for Serial Pseudo and Natural Code
DOI:https://doi.org/10.6025/isej/2023/10/2/45-50
Full_Text   PDF 1.29 MB   Download:   31  times
References:

[1] Engelberg, S., Benjamin, H. (2005). Pseudorandom sequences and the measurement of the frequency response. IEEE Instrumentation & Measurement Magazine, 8(1), 54–59.
[2] Miljkovic, G., Stojkovic, I., Denic, D. (2011). Generation and application of pseudorandom binary sequences using virtual instrumentation. Facta Universitatis, Series: Automatic Control and Robotics, 10(1), 51–58.
[3] Arsic, M., Denic, D. (1993). New pseudorandom code reading method applied to position encoders. Electronics Letters, 29(10), 893–894.
[4] Petriu, E. M. (1998). Absolute position measurement using pseudorandom binary encoding. IEEE Instrumentation & Measurement Magazine, 1(3), 19–23.
[5] Denic, D., Miljkovic, G. (2009). Code reading synchronization method for pseudorandom position encoders. Sensors and Actuators A: Physical, 150, 188–191.
[6] Petriu, E. M., Basran, J. S., Groen, F. C. A. (1990). Automated guided vehicle position recovery. IEEE Transactions on Instrumentation and Measurement, 39(1), 254–258.
[7] Denic, D., Ranñelovic, I., Miljkovic, G. (2006). Recent trends of linear and angular pseudorandom encoder development. In International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (pp. 746–750). Taormina, Sicily, Italy.
[8] New Wave Instruments. (2004). Linear feedback shift register: Implementation, M-sequence properties, feedback tables. [Online] Available: http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr/ (January 2004).
[9] Denic, D., Ranñelovic, I., Ranèic, M. (2004). Pseudorandom position encoder and code conversion problems. In International Conference on Environmental Science and Technology (ICEST) (pp. 437-440). Ohrid, Macedonia.
[10] Bourdel, S., Campo, E., Melet, P., Andrieux, L. (2001). From modelling of a CDMA transceiver in indoor environment to an ASIC circuit synthesis. Journal of Telecommunications and Information Technology, 3, 33–45.


Copyright 2013 socio.org.uk