Volume 11 Number 3 September 2020

    
Securing MapReduce Programming Paradigm in Hadoop, Cloud and Big Data Ecosystem

Anitha Patil

https://doi.org/10.6025/jcl/2020/11/3/87-96

Abstract In the wake of technologies like cloud computing, virtualization and big data, MapReduce is the new programming paradigm used for processing voluminous data known as big data. MapReduce computations take place in thousands of commodity computers associated with cloud. Thus it can exploits Graphics Processing Units (GPUs) associated with cloud with its parallel processing abilities. Enterprises in the real world... Read More


Neural Network Ensemble Approach for the Chinese Clinical Named Entity Recognition

Ling Luo, Nan Li, Shuaichi Li, Zhihao Yang, Hongfei Lin

https://doi.org/10.6025/jcl/2020/11/3/108-113

Abstract

[1] Uzuner, Ö., Solti, I., Cadag, E. (2010). Extracting medication information from clinical text. Journal of the American
Medical Informatics Association, 2010, 17 (5) 514-518.
[2] Sun, W., Rumshisky, A., Uzuner, O. (2013). Evaluating temporal relations in clinical text: 2012 i2b2 challenge. Journal of
the American Medical Informatics Association 2013, 20 (5) 806-813.
[3] Bethard, S., Savova, G., Chen, W-T.,...

[1] Uzuner, Ö., Solti, I., Cadag, E. (2010). Extracting medication information from clinical text. Journal of the American
Medical Informatics Association, 2010, 17 (5) 514-518.
[2] Sun, W., Rumshisky, A., Uzuner, O. (2013). Evaluating temporal relations in clinical text: 2012 i2b2 challenge. Journal of
the American Medical Informatics Association 2013, 20 (5) 806-813.
[3] Bethard, S., Savova, G., Chen, W-T., Derczynski, L., Pustejovsky, J., Verhagen, M. (2016). Semeval-2016 task 12: Clinical
tempeval. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016): 2016. 1052-1062.
[4] Collobert. R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P (2011. Natural language processing (almost)
from scratch. Journal of Machine Learning Research 2011, 12(Aug), 2493-2537.
[5] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C. (2016). Neural architectures for named entity
recognition. arXiv preprint arXiv:160301360 2016.
[6] Ma, X., Hovy, E. (2016). End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:160301354.
[7] He, J., Wang, H. (2008). Chinese named entity recognition and word segmentation based on character. In: Proceedings of
the Sixth SIGHAN Workshop on Chinese Language Processing: 2008.
[8] Li, H., Hagiwara, M., Li, Q., Ji, H. (2014). Comparison of the Impact of Word Segmentation on Name Tagging for Chinese
and Japanese. In: LREC: 2014. 2532-2536.
[9] Zhang, Y., Yang, J. (2018). Chinese NER Using Lattice LSTM. arXiv preprint arXiv:180502023 2018.

Read More