Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN:
Online ISSN:


  About TMD
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Transactions on Machine Design (TMD)
 

Designing the Printed Dog-Borne Dipole Structure
Nataša Nešic, Bratislav Milovanovic, Nebojša Donèov, Vanja Mandric-Radivojevic, Slavko Rupcic
College of Applied Technical Sciences Niš Aleksandra Medvedeva 20, Niš 18000, Serbia., University of Singidunum, Danijelova 32 Belgrade 11000, Serbia., University of Niš, Aleksandra Medvedeva 14 Niš 18000, Republic of Serbia., Osijek 31000, Croatia
Abstract: In this work we addressed the approach for designing a printed dog-bone dipole antenna. The results arrived are related to the numerical and experimental models of the printed structure. We study the models of the enclosure so as to develop the protection function. Further we analyse the structure on values of shielding effectiveness. To get the best results we changed the three parallel positions inside the enclosure.
Keywords: Aperture, Enclosure, Shielding Effectiveness, Dogbone Dipole Structure, Monopole Antenna, TLM Wire Method Designing the Printed Dog-Borne Dipole Structure
DOI:
Full_Text   PDF 3.53 MB   Download:   278  times
References:

[1] Nešiæ, N. J., Donèov, N. S. (2016). Shielding Effectiveness Estimation by using Monopole-receiving Antenna and Comparison with Dipole Antenna, Frequenz DeGruyter, no. 5- 6, DOI 10.1515/freq-2015-0203, p. 1-11.
[2] Bahadorzadeh, M., Lotfi-Neyestanak, A. A. (2012). A Novel and Efficient Technique for Improving Shielding Effectiveness of a rectangular Enclosure using Optimized Aperture Load, Elektronika ir Elektrotechnika, 18 (10) 89-92.
[3] Yenikaya, S., Yenikaya, G. (2011). Electromagnetic Coupling Analysis of Signal throught Aperture Perforated in a Loaded Shielding Enclosure Using Hybrid MoM/FEM, Int. Journal of Basic & Applied Sciences IJBAS-IJENS, 11 (6) 81- 86.
[4] Kumar, R., Dhakate, S. R., Saini, P., Mathur, R. B. (2013). Improved Electromagnetic Interference Shielding Effectiveness of Light Weight Carbon Foam by Ferrocene Accumulation, The Roy. Soc. of Chem. 2013: RSC Advances, vol. 3, p. 4145-4153.
[5] Luo, X., Chung, D. D. (1999). Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites, Elsevier Science:Composites: Part B , vol. 30, p. 227-231.
[6] Gupta, T. K., Singh, B. P., Mathur, R. B., Dhakate, S. R. (2014). Multi-Walled Carbon Nanotube–Graphene–Polyaniline Multiphase Nanocomposite with Superior Electromagnetic Shielding Effectiveness, The Royal Society of Chemistry 2014: Nanoscale, vol. 6, p. 842-851.
[7] Costa, F., Genovesi, S., Monorchio, A., Manara, G. (2000). A Circuit-based Model for the Interpretation of Perfect Metamaterial Absorbers, IEEE Trans. on Antennas and Propagation, 63 (3) 1201 - 1209.
[8] Munk, B. A. (2000). Frequency Selective Surfaces Theory and Design, New York: John Wiley and Sons, Inc.,.
[9] Ameli, A., Jung, P. U., Park, C. B. (2013). Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Polypropylene/Carbon Fiber Composite Foams, Elsevier: Carbon, vol. 60, p. 379-391.
[10] Paul, J., Greedy, S., Wakatsuchi, H., Christopoulos, C. (2011). Measurements and Simulations of Enclosure Damping Using Loaded Antenna Elements, 10th Int. Symp. on EMC, p. 676– 679, York.
[11] Cvetkoviæ, T. (2015). Numerical Characterization of Shielding Effectiveness of an Enclosure with Apertures Based on Coupling with the Wire Structures (in Serbian), Niš: Doctoral disertation, Faculty of Electonic Engineering, p. 107- 119.
[12] Christopoulos, C. (1995). The Transmission-Line Modelling (TLM) Method, New Jersey: IEEE Press in assoc. with Oxford University Press, Piscataway.
[13] Wlodarczyk, A. J., Trenkiæ, V., Scaramuzza, R., Christopoulos, C. (1998). A Fully Integrated Multiconductor Model for TLM, IEEE Trans. of MTT, 46 (12) 2431-2437.
[14] Trenkiæ, V., Wlodarczyk, A. J., Scaramuzza, R. (1999). A Modelling of Coupling between Transient Electromagnetic Field and Complex Wire Structures, Int. Journal of Num. Modelling, 12 (4) 257-273.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info